
SCUQ – A Class Library for the Evaluation of
Scalar- and Complex-Valued Uncertain

Quantities

Thomas Reidemeister

A thesis submitted to the Otto-von-Guericke University, Magdeburg
towards the degree of Diplom Ingenieurinformatiker (Dipl. Ing.-Inf.).

Themensteller: Dr. rer. nat. Hans Georg Krauthäuser
Betreuer: Prof. Dr. rer. nat. habil. Jürgen Nitsch

Prof. Dr.-Ing. habil. Georg Paul
Abgabetermin: 18.02.2007
vorgelegt von: Thomas Reidemeister

Lemsdorfer Weg 22
39112 Magdeburg
treideme@student.uni-magdeburg.de

Declaration / Erklärung

This thesis is the result of my own work and includes nothing that is the outcome of work done
in collaboration. I hereby certify that I did not use any other references than those stated and that
direct or indirect ideas taken over from elsewhere are marked as such.

Ich versichere hiermit, dass ich die vorliegende Diplomarbeit selbständig, ohne unzulässige
Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die
aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich
gemacht.

i

ii

Abstract

A measurement evaluation is not complete, unless the uncertainty and unit of the measured quan-
tity are also reported in addition to the measured value. In general, the measured quantity is based
on several correlated other quantities. In most cases the physical model relating these input pa-
rameters is known. A standard evaluating the uncertainty of the measured quantity in this case
is proposed by the ISO Guide to the expression of uncertainty in measurements (GUM) [1]. The
GUM proposes using the means of frequential statistics to evaluate the problem. Therefore ef-
fects that cannot be expressed using relative long run frequencies (i.e. repeated measurements)
are randomised. Although the GUM is widely accepted and has been ported to national standards
(e.g. DIN [2], and NIST [3]), it is a proven approximation of systematic effects contributing to
the uncertainty of the measured quantity.

Weise and Wöger [4] propose an alternate approach using Bayesian inference. Bayesian infer-
ence allows incorporating a degree of belief into the statistical evaluation of a quantity. Therefore,
their method can model systematic effects more accurately than the GUM does. According to the
authors, the outcomes of their method are in line with the requirements of the GUM.

In this thesis, we evaluate both approaches in general and evaluate the following problems in
particular:

• propagation of the uncertainty of scalar-valued (real) input quantities contributing to one
scalar (real) output parameter,

• propagation of the uncertainty of complex-valued input quantities contributing to one
complex-valued output parameter.

Related work focusing on these problem domains is reviewed and a class library implemented
in Python [5] that can be used by software applications to propagate the uncertainty in both cases
automatically, is presented. We implemented methods that use frequential statistics and present
a software design implementing the method proposed by Weise and Wöger. Furthermore, we
implemented classes evaluating the physical units of all quantities of the physical model. These
classes can be used optionally to verify the physical model.

We tested the class library by evaluating solved problems of other researchers. Furthermore,
we verified our implementation using a suite of component tests that can also be used to test the
compatibility of the destination platform. Our library evaluated all presented problems correctly,
and it was tested using Python 2.4 and NumPy 1.0.1 (see Oliphant [6]) on Microsoft Windows XP
and SUSE Linux 9.3 on 80x86 platforms.

We are confident that this class library can be used as a cornerstone in many software applica-
tions for uncertainty propagation.

iii

iv

Contents

Declaration / Erklärung i

Abstract iii

Contents v

List of Figures vii

List of Tables vii

1. Introduction 1

2. The Software Environment 3
2.1. The Python Programming Language . 4

2.1.1. Numeric Types . 5
2.1.2. Storage Types . 9

2.2. NumPy . 10
2.3. Supported Platforms . 13

3. Propagation of Uncertainty of Scalar Quantities 15
3.1. The Problem . 15
3.2. The GUM Approach . 15
3.3. Software Design . 17

3.3.1. The Hall Proposal . 17
3.3.2. The Reidemeister Formulation . 20

3.4. Discussion . 22

4. Propagation of Uncertainty of Complex-Valued Quantities 25
4.1. Evaluating the Combined Standard Uncertainty of Complex-Valued Models . . . 25

4.1.1. The Hall Proposal Based on a Covariance Matrix of the Influence Quantities 25
4.1.2. The Hall Proposal Based on Correlation Coefficients of the Influence

Quantities . 28
4.2. Evaluating Confidence Regions of Uncertain Complex-Valued Models 33
4.3. Conclusion . 35

5. Propagation of Uncertainty Using Bayesian Inference 37
5.1. Fundamentals of Bayesian Statistics . 37
5.2. Propagation of Uncertainty . 38

5.2.1. Prior Information . 38
5.2.2. The Likelihood Function Representing the Model Prior 40
5.2.3. The Posterior Distribution . 40
5.2.4. Reporting the Uncertainty . 41

5.3. Software Design . 41
5.4. Discussion . 46

v

6. Units in Measurements 47
6.1. The International System of Units (SI) . 47
6.2. Implementing Units into Soft– and Hardware 48
6.3. Software Design . 53
6.4. Discussion . 61

7. Examples 63
7.1. End Gauge Calibration Problem . 63
7.2. Impedance Measurement . 66

8. Conclusion 69

Glossary 71

Index of Notation 73

References 75

A. The Depth-First-Search (DFS) Algorithm 79

B. Mathematical Proofs and Formulas 81
B.1. Selected Statistical Distributions . 81

B.1.1. Uniform Distribution . 81
B.1.2. Triangular Distribution . 81
B.1.3. Beta Distribution . 82
B.1.4. Normal Distribution . 82
B.1.5. Multivariate Normal Distribution . 83
B.1.6. Bivariate Normal Distribution . 83

B.2. Monte-Carlo Integration . 83
B.3. The Central Limit Theorem . 84
B.4. Proof of the Equality of Both Approaches for Propagating Complex-Valued Un-

certainty . 84
B.5. Complex Differentiable Functions and the Cauchy-Riemann Equations 88
B.6. Derivation of Selected Complex-Valued Functions 89

B.6.1. Absolute Value . 89
B.6.2. Complex Conjugate . 90
B.6.3. Negation . 90
B.6.4. Inversion . 91
B.6.5. Square-Root . 91
B.6.6. Exponential Function . 91
B.6.7. Natural Logarithm . 92
B.6.8. Sine Function . 92
B.6.9. Cosine Function . 92
B.6.10. Tangent Function . 93
B.6.11. Inverse Sine Function (Arc-Sine Function) 93
B.6.12. Inverse Cosine Function (Arc-Cosine Function) 93
B.6.13. Inverse Tangent Function (Arc-Tangent Function) 94
B.6.14. Hyperbolic Sine Function . 94

vi

B.6.15. Hyperbolic Cosine Function . 94
B.6.16. Hyperbolic Tangent Function . 95
B.6.17. Inverse Hyperbolic Sine Function . 95
B.6.18. Inverse Hyperbolic Cosine Function . 95
B.6.19. Inverse Hyperbolic Tangent Function 96
B.6.20. Complex Addition . 96
B.6.21. Complex Multiplication . 96
B.6.22. Complex Division . 97
B.6.23. Complex Powers . 97
B.6.24. Inverse Two-Argument Tangent Function 97

C. SCUQ Programming Manual 99

List of Figures

1. The software environment of SCUQ . 3
2. Numeric Python types . 5
3. Coercion evaluation in Python . 8
4. Python storage types . 9
5. NumPy type hierarchy . 10
6. Correcting a measurement . 16
7. A dependency tree . 18
8. UML diagram of classes necessary to implement the example 19
9. Class diagram of the basic GUM-tree elements 21
10. Class diagram of the mathematical functions . 21
11. Class diagram of context of the uncertainty evaluation 22
12. The class hierarchy of our example . 30
13. The class Context . 32
14. Several fuzzy membership functions . 39
15. The software design of the rules . 43
16. The software components describing the model prior 44
17. Global information is modelled by the class Context 45
18. The smart transducer interface module (STIM) 49
19. The unit types of JSR-275 . 50
20. The class hierarchy of the unit types . 54
21. Chaining conversion operators . 58
22. The hierarchy of unit operators . 58
23. The unit consistency check implemented by the class Quantity 59
24. The comparsion of units . 60

List of Tables

1. Some examples of random and systematic effects 1
2. Binary operators for numeric types in Python 6
3. Unary operators for numeric types in Python . 6
4. Conversion operators for numeric types in Python 6
5. Methods of storage types . 9

vii

6. The NumPy ufuncs we implemented in our design 11
7. Tested platforms . 14
8. Methods to approximate the uncertainty of various distributions 22
9. A selection of fuzzy membership functions . 38
10. A selection of fuzzy operators . 39
11. The SI base-units . 47
12. A selection of derived SI-units . 48
13. The sections of a Transducer Electronic Data-Sheet (TEDS) 50
14. The TEDS unit definition . 51
15. Description of the effect of Python operations on the type unit 54
16. Input quantities used in the end-gauge example, adapted from Hall [7] 63
17. Impedance measurement example: estimated input parameters, adapted from Hall [7] 66
18. Impedance measurement example: correlation coefficients of input parameters,

adapted from Hall [7] . 66
19. A brief comparision of the methods propagating the uncertainty in measurements 70

viii

1. Introduction

A measurement is the estimation of a physical quantity. The uncertainty of a measurement quanti-
fies the trust that the estimate expresses the true value of the measured quantity. In most cases the
desired quantity is not measured directly. Instead it is estimated based on measurements of other
influence quantities that contribute to the measured quantity. We refer to a method evaluating the
uncertainty of a measured quantity based on influence quantities as propagation of uncertainty.

In the context of electrical measurements, the measured signals are often not only isolated, de-
coupled, and transmitted, they are also amplified, compensated, transformed, filtered, converted,
and linearized, before an estimate of the true value is printed on the screen of the measuring device
(see Schrüfer [8]). This example illustrates two properties of a measurement. First, it is impos-
sible to present the true value of the measured quantity. Second, the estimated quantity is based
on a model that can only approximate many factors that contribute to the uncertainty of the mea-
surement. Kessel [9] exemplifies several effects contributing to the uncertainty of a measurement,
shown in Table 1.

Random Effects Systematic Effects
Temperature fluctuations Drift of the measuring device

(i.e. due to aging)
Noise Uncertainty of the reference quantity
Irregular performance of the observer A biased observer

Table 1: Some examples of random and systematic effects

Schrüfer distinguishes between two major sources of effects that contribute to the uncertainty:
random effects and systematic effects. Random effects arise from non-ascertainable fluctuations
of the measuring device. Systematic effects are known.

There are many important areas, in which the expression of uncertainty is crucial. Examples are
calibration, compliance with quality and safety standards, and the comparison of measurements.

Unfortunately, the importance of a proper uncertainty evaluation is sometimes underestimated
for various reasons, which may lead to consequential damage; for example, Oberg [10] describes
the reasons why the NASA Mars Climate Orbiter was destroyed in 1999. Two of the reasons
contributing to the doom of the Mars probe were a poor evaluation of the navigation uncertainty
and the confusion of different unit systems. Finally, the 125,000,000 USD Climate Orbiter "[. . .]
metaphorically speaking, marched off the cliff and was destroyed [. . .]" (Oberg [10]).

Other reasons for a poor evaluation of the uncertainty in general maybe the complexity of the
propagation of uncertainty and the lack of proper software support.

There are several proprietary software tools available such as the GUM workbench 1.3 [11].
It does not integrate into the measurement evaluation directly. The data has to be imported by
the user or has to be obtained using other proprietary products. It supports physical units; how-
ever, they are just checked symbolically. Although the GUM workbench was validated by the
PTB (see PTB note [12]), the internals remain undocumented and the source code is unavailable.
Furthermore, the creators of the GUM workbench require the users of the software to submit to a
restrictive software license.

Another approach automating the evaluation of uncertainty is using class libraries such as
ByGUM [7]. The class libraries better integrate into existing programs that evaluate the mea-

1

sured quantity compared to standalone software solutions. ByGUM is implemented using an
interpreted language; therefore, it can also be used interactively. It does not provide support for
physical units. ByGUM is only freely available for non-commercial use and requires the users to
register their software. We are not aware of a class library for the propagation of uncertainty that
integrates physical units.

The goal of this thesis is to present our class library SCUQ. SCUQ is the abbreviation for
"class library for the automatic evaluation of Scalar or Complex-valued Uncertain Quantities". It
assists in the propagation of uncertainty in measurements in general and in the context of electrical
measurements in particular. We have chosen to implement the Gaussian error propagation law for
scalar and complex-valued influence quantities. We define scalar quantities being quantities that
are expressed using real values. The use of the Gaussian error propagation law is proposed by
the GUM and is therefore widely accepted. However, it is an approximation because it linearizes
the model in the region of the estimated value. In order to solve this issue, we also provide a
software design using Bayesian inference allowing a more accurate representation of systematic
and random effects than the Gaussian error propagation law does. Unfortunately, the method is
very computation-intensive, which limits its domain of application. Furthermore, we evaluate the
methods in this thesis leaving the choice to the user, which method suits their application best. In
addition, our class library supports physical quantities such that units can be assigned to numeric
values and uncertain quantities.

In Section 2 we describe the context, in which our class library is embedded in. In the Sec-
tions 3, 4, and 5 we describe the methods of uncertainty propagation, and our software designs
realizing them. Furthermore, we present and assess the approaches integrating units in software
in Section 6. Finally, we demonstrate the usage of the class library in Section 7 and conclude the
lessons learned in Section 8. The programming manual for SCUQ is included in Appendix C. It
describes the interfaces of all classes and demonstrates the usage of SCUQ.

2

2. The Software Environment

In this section we provide an overview of the software environment SCUQ is embedded in. SCUQ
stands for class library for the automatic evaluation of Scalar or Complex-valued Uncertain
Quantities. We implemented it in the Python programming language (see [5]) using NumPy
(see [6]). The classes use native Python data types and functions as well as data types and func-
tions of NumPy. NumPy is a third party collection of types and functions supporting scientific
computing. We also implemented an interface for NumPy. Figure 1 shows the components and
their interfaces within the environment of SCUQ.

Figure 1: The software environment of SCUQ

Since Python is an interpreted language, our classes can also be used interactively in the Python
interpreter and related applications. We developed an interface for NumPy so that applications
using NumPy can integrate our class library. NumPy as well as the Python interpreter provide
APIs for ANSI C. This allows the integration of SCUQ in applications using these APIs.

Since we implemented our design using NumPy and Python, the desired hardware platforms are
those that support both applications. Since Pythons functionality as well as NumPy functionality
depend on the underlying C-library we cannot guarantee the proper operation of SCUQ on all
platforms. We implemented a test-suite consisting of several test cases that verify the proper
operation of SCUQ (see Section 2.3).

Section 2.1 presents a short overview of the Python programming language and a description of
the components of Python used for our design. Section 2.2 describes NumPy briefly. Furthermore,
we describe how SCUQ interacts with NumPy. In Section 2.3, we describe a suite of self tests
that is included in SCUQ and the tested platforms.

3

2.1. The Python Programming Language

The Python programming language is a free platform-independent general-purpose programming
language (see [5]). According to Gupta [13], Python is the ideal choice for applications that
require the features of a scripting language as well as the features of an interpreted language. It
evolved from the ABC programming language that was used for teaching purposes in the 1980s.

Gupta [13] identified the following features of Python:
• easy: Python has a compact notation that is similar to Algol, C, and Pascal. It does not have

extra symbols for starting and ending code blocks. Instead indentation is used to group
statements.

• scalable: Compared to scripting languages of the Unix-environment, Python provides better
structure support for large programs. The code can be grouped in modules.

• high level: Python has built-in modules to make system calls. It contains support for storage
types, such as lists, arrays and hash-tables, allowing expressing complicated expressions in
a single statement.

• object oriented: All components of the Python programming language are objects. Python
supports late binding, multiple inheritance, and polymorphism, allowing the creation of
object-oriented class hierarchies. Moreover, operators can have different meanings accord-
ing to the elements being referenced. Python is a dynamic-typed language. Therefore, the
type of an object is determined at run time only.

• interpreted: Python supports byte compilation like the Java programming language does.
In addition, Python programs can be run, debugged, and tested interactively in the Python
interpreter.

• extensible and flexible: Python uses the same interface for built-in and third party modules.
Classes can be grouped in modules. Native code can be integrated using a C API.

• rich core library
• memory management: The interpreter manages the memory, thus removing additional pro-

gramming overhead from the developer.
• exception handling: Python supports exceptions similar to Java ((see [14])) and C++.
• portability: The Python interpreter was ported to variety of hard- and software platforms

because it is implemented in ANSI C.
• freeware: Python is freely available. The code created using the Python interpreter can be

sold or distributed by the creator in any manner.
According to Gupta [13] Pythons main application areas are:

• integrating large software components written in C, C++, and Java,
• prototyping of applications that are about to be implemented in C, C++, or Java,
• writing CGI scripts; this is because of Pythons strong presence on the Web.

In addition to Guptas [13] enumeration of application areas, we identified scientific computing
as application area of Python. Because Python provides native support for complex numbers and
there are a variety of 3rd-party modules for Python for scientific computing such as NumPy (see
Oliphant [6]). It supports large-scale numeric arrays and matrices, linear algebra, random number
generation, and discrete Fourier transformations. However, NumPy defines own numeric types
that have a similar interface like Pythons numeric types.

After presenting the features of Python in general, we describe the Python types we used for our
design in detail. This description can be used as guideline for implementing the environment of
our design in other object oriented programming languages. In Section 2.1.1 we describe Pythons
numeric types. In Section 2.1.2 we describe its storage types.

4

2.1.1. Numeric Types

Integer

plain long boolean

float complex

real : float
imag : float

Numeric Python Types <<interface>>
Numeric

Figure 2: Numeric Python types

Python implements a variety of numeric types. Their hierarchy is shown in Figure 2. The
accuracy and range of the built-in types are platform dependent:

• The type int implements the type long int of the platforms C library having at least
32 bits of precision.

• long is a platform independent type modelling integers of arbitrary precision.
• The type boolean is just an alias for int that is used to define the constants True and
False.

• The type float implements floating-point numbers. The precision as well as the capabil-
ities depends on the platforms C library type double; for example, Microsoft Visual C++
does not implement the values infinity (inf) and not a number (NaN).

• The type complex implements complex numbers. It is backed up by two floating-point
numbers representing the real and the imaginary part respectively.

All types implement the binary operators shown in Table 2 according to the arithmetic of the
type. The same applies to the unary operations shown in Table 3. All types except for complex
can be converted to each other using the operators shown in Table 4. They also implement con-
version to other numeric types shown in Table 4. Instances of complex raise an error whenever
they are about to be converted to another type using these methods.

If a class should model a custom numeric type, no inheritance is needed. Only the methods
shown in Table 2 need to be implemented. Therefore we denoted the abstract type Numeric as
an interface defining the methods shown in the Tables 2, 3, and 4.

5

Operation Operator Method
Addition + __add__(self, other)

Subtraction - __sub__(self, other)
Multiplication * __mul__(self, other)

Division / __div__(self, other)
Division // __truediv__(self, other)
Power ** __pow__(self, other)

Shift Left << __lshift__(self, other)
Shift Right >> __rshift__(self, other)

And & __and__(self, other)
Exclusive Or \ __xor__(self, other)

Or | __or__(self, other)
Modulo % __mod__(self, other)

Less Than < __lt__(self, other)
Less or Equal <= __le__(self, other)

Equal == __eq__(self, other)
Not Equal != __neq__(self, other)

Greater Than > __gt__(self, other)
Greater or Equal >= __ge__(self, other)

Table 2: Binary operators for numeric types in Python

Operation Operator Method
Negation - __neg__(self)
Inversion ~ __inv__(self)

Absolute Value abs() __abs__(self)
Non Zero bool() __nonzero__(self)

Table 3: Unary operators for numeric types in Python

Desired Type Operator Method
complex complex() __complex__(self)

int int() __int__(self)
long long() __long__(self)
float float() __float__(self)

Table 4: Conversion operators for numeric types in Python

6

1

def r a t i o n a l (n , d = 1) :
3 re turn Rat iona lNumber (n , d)

5 c l a s s Rat iona lNumber :

7 def _ _ i n i t _ _ (s e l f , numera to r , d e n o m i n a t o r) :
s e l f . n = long (n u m e r a t o r)

9 s e l f . d = long (d e n o m i n a t o r)
s e l f . n o r m a l i z e ()

11

def __mul__ (s e l f , v a l u e) :
13 n = s e l f . n * v a l u e . n

d = s e l f . d * v a l u e . d
15 re turn r a t i o n a l (n , d)

17 def __add__ (s e l f , v a l u e) :
n = s e l f . n * v a l u e . d + s e l f . d * v a l u e . n

19 d = s e l f . d * v a l u e . d
re turn r a t i o n a l (n , d)

21

def n o r m a l i z e (s e l f) :
23 my_gcd = Rat iona lNumber . gcd (abs (s e l f . n) , s e l f . d)

s e l f . n /= my_gcd
25 s e l f . d /= my_gcd

27 def gcd (m, n) :
i f (n == 0L) :

29 re turn m
e l s e :

31 re turn Rat iona lNumber . gcd (n , m % n)
gcd = s t a t i c m e t h o d (gcd)

33

def _ _ f l o a t _ _ (s e l f) :
35 re turn f l o a t (s e l f . n) / s e l f . d

37 def _ _ s t r _ _ (s e l f) :
re turn " ("+ s t r (s e l f . n) +" / "+ s t r (s e l f . d) +") "

39

def _ _ c o e r c e _ _ (s e l f , v a l u e) :
41 i f (l ong (v a l u e) == v a l u e) :

re turn (s e l f , r a t i o n a l (v a l u e))
43 e l s e :

re turn (f l o a t (s e l f) , v a l u e)
45

r1 = r a t i o n a l (2 , 4) # 2 / 4
47 p r i n t r1 # (1 / 2)

p r i n t (r1 + 2) # (5 / 2)
49 p r i n t (r1 + 0 . 5) # 1 . 0

Listing 1: Example: custom numeric types

In order to demonstrate the creation of a custom numeric type, we present an implementation of

7

a rational number type of arbitrary precision in Listing 1. In order to keep the example compact,
we limit the implementation to the operations +, *, and float(). In lines 7–10 we define
the default constructor. It takes two values representing the nominator and the denominator of
the rational number. The arguments are converted to long and stored as the members n and
d of the class RationalNumber. The operators + and * are implemented using the methods
__add__ and __mul__ respectively. The method normalize converts the rational number
into its canonical form. The member __float__ converts the instance to an instance of float.
We demonstrate the use of the type in lines 46–49. At first we define the rational number 2

4 . In
the next line we show that the constructor creates the canonical form of it. The following lines
demonstrate the operations * and +. The operations are evaluated in two steps:

1. If the types of the operands differ, Python calls the method __coerce__ on the left
operand. The method should return a pair of variables of the same type.

2. If both arguments have the same type, Python invokes the respective method on the left
operand and provides the right operand as argument. If however the arguments are of a
different type, step one is repeated or an exception is raised if the coercion is impossible.

Figure 3 illustrates the general evaluation of coercion rules. Lets take a closer look at
__coerce__ shown in lines 40–44. If the argument value can be converted to an integer,
we create the rational number value

1 . Otherwise, the implementation falls back to floating point
arithmetic.

Figure 3: Coercion evaluation in Python

8

2.1.2. Storage Types

Python defines several storage types as shown in Figure 4.

<<interface>>
python::Sequence

python::ImmutableSequence python::MutableSequence

python::String python::Unicode python::Tuple python::List

<<interface>>
python::Mapping

python::Dictionary

Python Storage
Types

Figure 4: Python storage types

In general, there are two classes: sequences and mappings. Sequences store the elements like
an array indexing each element using an unique integer. Mappings act like a hash-table mapping
the elements to keys that can be of an arbitrary immutable type.

Operator Method Purpose
len() __len__(self) Returns the stored number of

elements.
self[key] __getitem__(self, key) Returns the value of the element that

is referenced by key.
self[key] __setitem__(self, key) Sets the value of the element that is

referenced by key. Dictionaries create
a new entry for key, if the key is not
already set. For sequences the key
must be an integer within the
range 0 < len().

self[key] __delitem__(self, key) Deletes the entry that is referenced
by key.

iterkeys() __iter__(self) Returns an iterator over the elements
of the storage type.

contains() __contains__(self,item) This method tests if an element is
contained in the storage type.

Table 5: Methods of storage types

A distinction is drawn between mutable and immutable sequences. Immutable sequences raise
an error whenever their content is about to be modified. Sequences and dictionaries differ in the
retrieval and placement of their entries. A sequence seq in Python contains N entries that can be
accessed by seq[i] and i < len(seq). Dictionaries accept any immutable Python object
as argument i. They are hash-tables; the argument is the key. Sequence types provide support for
slicing. In order to extract a subsequence from element a up to element b from a sequence seq,
the expression seq[a:b] can be used. If all elements up to the element a need to be extracted
then seq[:a] can be used. All container types implement the operations shown Table 5.

9

2.2. NumPy

ndarray

matrix

T : matrix
H : matrix
I : matrix

Numpy Types

<<interface>>
Ufuncs

<<interface>>
Numeric

Figure 5: NumPy type hierarchy

After having described some of the Pythons built-in types, we describe the types of NumPy (see
Oliphant [6]) that were used in our implementation. NumPy [6] is a third-party module for scien-
tific computing that includes classes and functions to solve problems of linear algebra, ordinary
differential equations, fast Fourier transformations, and other problems. Its major contribution
is an array type that implements the built-in numeric methods of Python and supports so-called
universal broadcasting functions (ufuncs). These functions are common mathematical functions
that operate on real or complex numbers. Used on arrays, they work on each element. The chosen
NumPy types hierarchy is shown in Figure 5.

The type ndarray supports large n-dimensional arrays. Each array contains only objects of
one type; therefore, ndarray is also referred to as homogenous array. It implements the ufuncs,
the standard methods for numeric types in Python, and the operations for Python storage types.

10

Function Description
arccos(x) Returns the inverse cosine of the parameter x.
arccosh(x) Returns the inverse hyperbolic cosine of the parameter x.
arcsin(x) Returns the inverse sine of the parameter x.
arcsinh(x) Returns the inverse hyperbolic cosine of the parameter x.
arctan(x) Returns the inverse tangent of the parameter x.

arctan2(x,y) Returns the inverse tangent of the operation x/y.
arctanh(x) Returns the inverse hyperbolic tangent of the parameter x.
cos(x) Returns the cosine of the parameter x.
cosh(x) Returns the hyperbolic cosine of the parameter x.
exp(x) Returns the exponential value of the parameter x.

hypot(x,y) Returns the value of the operation
√

x2 + y2.
log(x) Returns the Natural logarithm of the parameter x.

log10(x) Returns the decadic logarithm of the parameter x.
log2(x) Returns the binary logarithm of the parameter x.
tan(x) Returns the tangent of the parameter x.
tanh(x) Returns the hyperbolic tangent of the parameter x.
sin(x) Returns the sine of the parameter x.
sinh(x) Returns the hyperbolic sine of the parameter x.
sqrt(x) Returns the square-root of the parameter x.
fabs(x) This method is an alias for the method abs(x).

Table 6: The NumPy ufuncs we implemented in our design

11

Table 6 shows the selection of ufuncs used in our design. If one of these functions is called on
an ndarray or its siblings, it is broadcasted to the individual elements of the array; such that,
the stored Python object is called with the respective method and the result of the operation is
stored in the return array. If the respective method is not implemented by the array element an
error occurs. Hence, not all ufuncs need to be implemented by an object in order to be stored in
an ndarray. An extension of the type ndarray is the type matrix. It implements Pythons
numeric methods for multiplication and powers to support matrix multiplication and powers of
quadratic matrices. Consider the example shown in Listing 2. We implemented the type pair.

1 # T h i s l i n e i m p o r t s t h e 3 rd p a r t y module numpy .
from numpy import *

3

T h i s c l a s s i m p l e m e n t s our cus tom t y p e f o r p a i r s .
5 c l a s s p a i r :

The d e f a u l t c o n s t r u c t o r o f our p a i r s c l a s s
7 def _ _ i n i t _ _ (s e l f , a , b) :

s e l f . a = a
9 s e l f . b = b

11 # The u f u n c t h a t i s c a l l e d f o r +
def __add__ (s e l f , o t h e r) :

13 new_a = s e l f . a + o t h e r . a
new_b = s e l f . b + o t h e r . b

15 re turn p a i r (new_a , new_b)

17 # T h i s method a l l o w s t h e p r i n t i n g o f our p a i r s .
def _ _ s t r _ _ (s e l f) :

19 re turn "(%s ,% s) " % (s e l f . a , s e l f . b)

21 # g e n e r a t e two a r r a y s o f 10 p a i r s
a_1 = a r r a y ([p a i r (a , a +1) f o r a in r a n g e (1 0)])

23 a_2 = a r r a y ([p a i r (a , a +1) f o r a in r a n g e (1 0)])

25 p r i n t a_1 + a_2
R e s u l t : [(0 , 2) (2 , 4) (4 , 6) (6 , 8) (8 , 1 0) (1 0 , 1 2) (1 2 , 1 4)

27 # (1 4 , 1 6) (1 6 , 1 8) (1 8 , 2 0)]

Listing 2: Example: using universal broadcasting functions
We assume that an addition of pairs takes place element wise. Such that (a,b) + (c,d) =

(a + c,b + d). We create two ndarray-instances of ten pairs and add the two ndarray-
instances. The operator + invokes the arrays method __add__, which then broadcasts the op-
eration to the individual pair elements. The result of the addition of the pairs is stored in an
temporary array and afterwards returned by the method __add__ of ndarray. Note that we
only implemented the method for the ufunc add and not all ufuncs. We also did not inherit any
functions from base classes. These are the fundamental properties that distinguish broadcasting
from inheritance. Broadcasting is fundamental for integrating our design into NumPy, we later
describe in the Sections 3 and 4.

12

2.3. Supported Platforms

Python [5] is available for a variety of platforms including Windows (see Microsoft [15]),
Linux (see GNU Software Foundation [16]), and Mac OS (see Apple [17]). However, each distri-
bution strictly depends on the underlying operating system and its C API, especially with respect
to the mathematical functions; for example, the floating point API of Microsoft Windows does
not support the values infinity (inf) and not a number (NaN). Furthermore, the accuracy of the
floating point operations may vary among the platforms.

Because of these issues we cannot guarantee that SCUQ is fully operational on all plat-
forms supported by Python and NumPy. In order to exclude the platforms, on which our im-
plementation is not operational, we developed a suite of test cases. It is defined in the mod-
ule scuq.testcases and is invoked using python scuq/testcases.py. We defined
component tests for the classes of SCUQ and also test their interaction using the examples de-
scribed by Hall in [7], [18], and [19]. We compare the outcomes stated in the publications to the
outcomes of our component tests with an absolute accuracy of 10−6. That said, passing all tests is
no guarantee for SCUQ to be operational, since we assume that Pythons floating point arithmetic
is working correctly. The console output for passing all tests is shown in Listing 3.

1 workspace / P r o t o t y p > python scuq / t e s t c a s e s . py

3 . . .
! @br ie f T e s t t h e i n t e g r a t i o n o f q u a n t i t i e s o f t h e Module cucomponents

. . . . ok
5 ! @br ie f T e s t i n s t a n c e s o f cucomponents . S in ok

! @br ie f T e s t i n s t a n c e s o f cucomponents . S inh ok
7 ! @br ie f T e s t i n s t a n c e s o f cucomponents . S q r t ok

! @br ie f T e s t i n s t a n c e s o f cucomponents . Sub ok
9 ! @br ie f T e s t i n s t a n c e s o f cucomponents . Tan ok

! @br ie f T e s t i n s t a n c e s o f cucomponents . Tanh ok
11

−−−
13 Ran 135 t e s t s i n 0 .755 s

15 OK

17 workspace / P r o t o t y p >

Listing 3: Console ouput of successful tests

If however a single or more tests fail, it is most likely that SCUQ is not operational on the
respective platform. The description of the individual tests is included in the programming manual
(see Appendix C). Table 7 contains the platforms, on which SCUQ was tested successfully.

13

Architecture Operating System Python NumPy
Interpreter

Intel Xeon 3.06 SUSE Linux 9.3 Python 2.4 NumPy 1.0.1
4 GB RAM Kernel: 2.6.11.4-21-bigsmp built using built using

GCC 3.3.5 GCC 3.3.5
Intel Xeon 3.06 Microsoft Windows XP Python 2.4.3 NumPy 1.0.1
4 GB RAM Professional 2002 built using Microsoft Binary dist. from

Service Pack 2 Visual C++ v.1310 www.scipy.org
Intel Celeron M SUSE Linux 9.3 Python 2.4 NumPy 1.0.1
256 MB RAM Kernel: 2.6.11.4-21-default built using built using

GCC 3.3.5 GCC 3.3.5

Table 7: Tested platforms

Based on the evaluation of the platforms described above the following issues are known:
• The tests of the rational number type fails when using NumPy 1.0.1 RC. This issue can be

solved by upgrading to NumPy 1.0.1 (release). Otherwise the rational numbers cannot be
used in combination with the ufuncs max and min.

• The values inf and NaN are not available on Windows. This problem can be avoided by
migrating to another platform such as Linux.

14

www.scipy.org

3. Propagation of Uncertainty of Scalar Quantities

In this section we evaluate the problem of the propagation of uncertainty of scalar quantities
and review the approach proposed by the Guide to the Propagation of Uncertainty in Measure-
ments (GUM) [3] in Section 3.2. In Section 3.3, we present a software design evaluating the
uncertainty propagation, based Hall’s proposals [20] and [19].

3.1. The Problem

Suppose several estimated scalar input quantities (x̂1, x̂2, . . . , x̂n) are related by a physical model,
shown in Equation 1. The uncertainty u(xi) of each input quantity xi is known, and the input quan-
tities may be correlated. The input quantities are also referred to as components of uncertainty.

y = f (x1,x2, . . . ,xn) (1)

The problem is the evaluation of the uncertainty uc(y) of the model output y. The uncertainty
of y is also referred to as combined standard uncertainty that quantifies a symmetric interval [ŷ±
uc(y)], in which the true value y is supposed to be with a level of confidence of approximately 68%.
In addition, it is sometimes required to provide a custom confidence interval [ŷ± kuc(y)] for the
estimated value of y.

3.2. The GUM Approach

Taylor et al. [3] describe a standard for the uncertainty evaluation in various areas (e.g. basic
and applied research, international comparisons of measurement standards, generation of stan-
dard reference data). Their approach is based on separating the components of uncertainty into
two groups: components of uncertainty arising from random effects (type A) and components of
uncertainty arising from other effects (type B). These components can therefore be evaluated by a
statistical analysis (type A evaluation) or by other means (type B evaluation). The result of either
type A or type B evaluations is presented as a standard deviation. They refer to it as standard
uncertainty. A type B evaluation is based on background knowledge about the respective quantity
(i.e. knowledge of systematic effects).

After having described the evaluation of the input quantities, we describe the computation of the
combined standard uncertainty. The GUM [3] recommends using the Gaussian error propagation
law shown in Equation 2.

u2
c(y) =

N

∑
i=1

(
∂ f
∂xi

)2

u2(xi)+2
N−1

∑
i=1

N

∑
j=i+1

∂ f
∂xi

∂ f
∂x j

u(xi,x j)2 (2)

The Gaussian error propagation law linearizes the model function in the region of y in order to
evaluate its uncertainty uc(y). The input parameters are the following.

• u(xi): the uncertainty of the input parameter xi,
• u(xi,x j): the estimate of the covariance of the input quantities xi and x j,
• ∂ f

∂xi
: the partial derivate of the model function with respect to xi.

The output is uc(y), the estimated combined standard uncertainty. It is in general only an
approximate solution because it is based on the first-order Taylor series of the model (see Equa-
tion 1).

15

Figure 6: Correcting a measurement

According to the GUM, the model should include corrections compensating systematic effects
as input parameters. In order to preserve the linearity of the model the corrections should be
included as factors or offsets. In Figure 6 we show a correction of a measured quantity. The
measured value y′ is shifted by a known systematic effect c. Therefore it needs to be corrected by
−c. The correction c as well as the other input parameters of the model are input arguments of
Equation 2, and the correction c may also be uncertain. Suppose a measurement model f ′ indi-
rectly obtains y′ from a variety of measured input quantities (x1,x2, . . . ,xn). However y′ includes
a systematic offset c. Equation 3 is used to estimate the true measurement result. This equation
should be used to evaluate the combined standard uncertainty according to Equation 2.

y′ = f ′(x1,x2, . . . ,xn)
y = f (x1,x2, . . . ,xn,c) = f ′(x1,x2, . . . ,xn)− c (3)

The uncertainty of c is expressed as u(c). The GUM assumes that the majority of applica-
tions return an approximately normally distributed output quantity because the central limit theo-
rem (CLT) is met (see Appendix B.3). According to the GUM, the measurement result should be
reported as [ŷ±uc(y)]. The true value is supposed to lie in the interval [ŷ−uc(y), ŷ+uc(y)] of one
standard deviation. This representation has a level of confidence of approximately 68%.

However, in some cases it is desirable to state the confidence interval with another level of
confidence (e.g. 95% or 99.5%). In these cases the confidence interval is expressed as [ȳ± k ·
uc(y)]. The factor k is a so-called coverage factor.

The evaluation of k requires knowledge of uc that is also only approximated. The GUM pro-
poses to use the Welch-Satterthwaite (W-S) formula to evaluate k based on the degrees of free-
dom (DOF) νi of the estimated input quantities x̂i. The parameter k is then obtained from the
quantile function of Students t-distribution (see Spiegel and Stephens [21]). The DOF of the input
quantities may be interpreted as level of trust. Usually they are equal to the sample size νi = m
on which the estimate of the respective input parameter is based on. If a parameter is known

16

beforehand, such as a systematic effect, the assigned DOF are infinite νi = ∞. The W-S formula
shown in Equation 4 returns the effective degrees of freedom νeff.

νeff =
u4

c(y)

∑
n
i=1

(
∂ f
∂xi

)4
u4(xi)

νi

(4)

• uc(y) is the combined standard uncertainty of y that is evaluated using Equation 2.
• u(xi) is the input uncertainty of the input quantity xi.
• νi is the DOF of the imput quantity xi, i.e. it is evaluated as described above.
• ∂ f

∂xi
expresses the linerized model with respect to xi.

The effective DOF νeff and the desired level of confidence p are used arguments of the quantile
function of Students t-distribution to obtain the coverage factor k. The final confidence interval is
described using [ŷ± kuc(y)].

3.3. Software Design

We desire a software design that performs the evaluation of the combined standard uncertainty
of y based on x̂i, u(xi) and systematic effects. Furthermore we require that the software design
evaluates the effective DOF automatically. Hall [19] proposes a design pattern encapsulating
Equation 2 called GUM–tree. It evaluates the components of uncertainty, maintains global data
(i.e. the correlation coefficients) and combines the components of uncertainty. However, his
design, presented in [19], does not evaluate the effective degrees of freedom, and is not able to
handle physical units by default.

His approach is first described in Section 3.3.1. Thereafter we discuss our design modifying
his proposal in Section 3.3.2.

3.3.1. The Hall Proposal

Hall’s [19] concept is to break any equation of the form shown in Equation 1 down into a depen-
dency tree of operations. The structure of the tree determines the order of how the operations need
to be evaluated to obtain y. To illustrate this procedure consider the following example.

Imagine one has to measure the distance s(a, t) of a uniformly accelerated object after t seconds
with a constant acceleration of a. If we assume no initial distance s(t = 0) = 0 and no initial ve-
locity v(t = 0) = 0, then Equation 5 gives the distance. Its dependency tree is shown in Figure 7.
The plain leaves depict the inputs of the equation, the diagonal-hatched nodes show the opera-
tions, and the horizontal-hatched node depicts a constant. The equation can be evaluated using
postfix notation. In order to do that, the tree needs to be traversed using the depth-first-search
algorithm (see Appendix A). The numbers below the nodes show the order of their evaluation.

s(a, t) =
a
2

t2 (5)

In order to encapsulate the partial derivates, Hall proposes to abstract every subtree as fixed
variable replacing each inner node j by a variable as shown in Equation 6.

x j = f j(Λ j) (6)

• x j is the variable of the current node j.

17

Figure 7: A dependency tree

• Λ j is the set of parameters that represents the direct child-nodes of the subtrees of the
current node.

By applying this scheme to the example described above, we obtain the following equations.

x1 = a

x2 = 2

x3 = f3(x1,x2) =
x1

x2
x4 = t

x5 = f5(x4) = x2
4

x6 = f5(x3,x5) = x3x5 (7)

The partial derivates are computed using the chain rule of derivation. Hall defines partial
derivates for every inner node using Equation 8.

u j(x) = ∑
λk∈Λ j

∂ f j

∂λk
uk(x) (8)

• u j(x) expresses the uncertainty of the current node j with respect to the input parameter x.
• the parameter x is a leaf of the dependency tree.
• λk represents a direct child node of the current node.
• ∂ f j

∂λk
describes the partial derivate of the current node with respect to the child node λk.

• uk(x) expresses the uncertainty of the child node λk with respect to the input parameter x.
It is evaluated using this scheme recursively.

The partial derivates of the input parameters are computed as shown in Equation 9.

u j(x) =

{
u(x j) x = x j

0 otherwise
(9)

Note that this representation correctly implements the chain rule for partial derivates. It bears
analogy to the partial derivation of a variable with respect to the variable itself and with respect to
a constant.

By using the Equations 8 and 9 on our example, we obtain the following partial derivates.

u3(x) =
∂ f3

∂x1
u1(x)+

∂ f3

∂x2
u2(x)

18

=
1
x2

u1(x)−
x1

x2
2

u2(x) (10)

u5(x) =
∂ f5

∂x4
u4(x)

= 2x4u4(x) (11)

u6(x) =
∂ f5(x3,x5)

∂x3
u3(x)+

∂ f5(x3,x5)
∂x5

u5(x)

= x5u3(x)+ x3u5(x) (12)

Hall [19] proposed to generate a class for each elementary function, based on an interface called
IUncertain. All characteristics such as binary operations, unary operations, input variables, and
constants are implemented as subclasses of that interface. Figure 8 shows the classes necessary to
evaluate our example.

<<interface>>
IUncertain

getValue() : double
getUncertainty(i : Leaf) : double
getDependencies() : Set

Leaf

getValue() : double
getUncertainty(i : Leaf) : double
getDependencies() : Set

value : double
uncertainty : double

BinaryOperation

getDependencies() : Set

left : IUncertain
right : IUncertain

Multiply

getValue() : double
getUncertainty(i : Leaf) : double

Divide

getValue() : double
getUncertainty(i : Leaf) : double

Square

getValue() : double
getUncertainty(i : Leaf) : double

UnaryOperation

getDependencies() : Set

right : IUncertain

Figure 8: UML diagram of classes necessary to implement the example

• The class Leaf is a realization of the interface IUncertain. It expresses constants and
input variables. Therefore, it has to implement the attributes value and uncertainty.
These are fixed parameters for the measured value and the known uncertainty respec-
tively. The methods getUncertainty() and getValue() are only accessors to
the stored attributes. Since there are no child nodes assigned to a leaf node, the method
getDependencies() is implemented returning this node only.

• The interface IUncertain is the root interface for all nodes. The method getValue()
is used to return the measured value. The method getUncertainty() returns the stan-
dard uncertainty. This method implements the partial derivates for the current node, ac-
cording to Equation 8. Its parameter Leaf i is used to allow the partial derivation. The

19

method getDependencies() returns a set of IUncertain instances representing the
leafs of the current node.

• The classes BinaryOperation and UnaryOperation provide an abstract interface
for binary and unary operations respectively. They contain attributes modelling their sub-
trees. Thus, the binary operations have left and right subtrees. The unary operations only
implement a right subtree.

• The classes Multiply, Divide, and Square are specializations of the binary and
unary operations. Each operation has to implement the methods getValue() and
getUncertainty(), which return the calculated value and the uncertainty of their sub-
tree.

The realizations for all operations necessary are stored in a mathematical function library. Be-
sides creating the nodes of the GUM tree, one needs to be able to store global information (such
as the correlation matrix) and to invoke the uncertainty calculation. Hall proposes to encapsulate
these aspects in a class called Context.

Class libraries implementing the pattern described above are ByGum [7] and GUM ++ [22].
From our perspective these are practicable approaches to evaluate the uncertainty as proposed by
the GUM [3]. However, the implementations are unable to propagate units along with the un-
certainty and the measured value. They do not implement other uncertainty handling approaches
(i.e. using Bayesian inference, we will describe in Section 5). Furthermore, the standard set of
elementary functions is very limited in these class libraries. We desire a class library that has a
larger set of elementary functions.

3.3.2. The Reidemeister Formulation

Because of these issues we implemented Hall’s [19] proposal again as module in SCUQ, inte-
grating physical quantities having physical units. We also provide an interface for NumPy (see
Oliphant [6]) that is a very prominent Python library for scientific computing. NumPy has a
rich core library of mathematical functions. These functions can be easily integrated into Python
classes similar to Pythons operators (see Section 2). Furthermore, our design, like Hall’s im-
plementation [7], implements Pythons operators; therefore, SCUQ can be easily integrated into
existing Python projects.

We use a similar design as Hall to model the GUM-tree elements shown in Figure 9. Our math-
ematical function library consists of the classes shown in Figure 10. All uncertain components
implement the ufuncs of NumPy shown in Table 6. Furthermore, we implement the mathematical
operators shown in Table 2. This allows defining the physical model conveniently.

The class UncertainInput models leafs of the GUM-tree. It has the at-
tributes __uncertainty, __value, and __dof expressing the uncertainty, estimated
value, and the degrees of freedom. These attributes are available through the methods
get_uncertainty, get_value, and get_dof. In analogy to Hall’s proposal, the method
depends_on returns the list of leafs of the current instance. We divided the mathemat-
ical functions into two major categories: binary and unary functions. The abstract classes
BinaryOperation and UnaryOperation provide the interface for these function classes.

Our design of the class context is shown in Figure 11. It maintains the correlation coefficients
of the input quantities in the hash-table __corr and evaluates the effective DOF as well as the
combined standard uncertainty. Our class library does not, in contrast to Hall’s [7] proposal, re-
quire the context to be created before the model. The input quantities are directly created using the
default constructor of UncertainInput. Furthermore, we implemented static factory meth-

20

UncertainComponent

UncertainInput

depends_on() : List
get_value() : float
get_uncertainty(x : UncertainInput) : float
get_dof() : float

__uncertainty : float
__value : float
__dof : float

UnaryOperation

get_sibling() : UncertainComponent
depends_on() : List

__sibling : UncertainComponent

BinaryOperation

get_left() : UncertainComponent
get_right() : UncertainComponent
depends_on() : List

__left : UncertainComponent
__right : UncertainComponent

<<interface>>
numpy::Ufuncs

<<interface>>
python::Numeric

<<interface>>
python::Pickle

Figure 9: Class diagram of the basic GUM-tree elements

ucomponents::UnaryOperation

Exp

Log

Sqrt

Sin

Cos

Tan

ArcSin

ArcCos

ArcTan

Sinh

Cosh

Tanh

ArcSinh

ArcCosh

ArcTanh

All children of UnaryOperation and BinaryOperation implement:
get_value() : Float
get_uncertainty(x : UncertainComponent) : Float
__getstate__() : Tuple
__setstate(state : Tuple) : void

ucomponents::BinaryOperation

ArcTan2

Add

Sub

Mul

Div

Pow

Abs

Neg

Inv

Figure 10: Class diagram of the mathematical functions

21

ucomponents::Context

set_correlation(a : UncertainInput,b : UncertainInput,corr : float) : void
get_correlation(a : UncertainInput,b : UncertainInput) : float
uncertainty(x : UncertainComponent) : float
dof(x : UncertainComponent) : float

__corr : Dictionary

Figure 11: Class diagram of context of the uncertainty evaluation

Method Description
gaussian(value,sigma,dof) Creates an instance of UncertainInput having

u(x) = sigma, x = value,
and dof effective degrees of freedom.

uniform(value,halfwidth,dof) Creates an instance of UncertainInput having
u(x) = halfwidth√

3
, x = value,

and dof effective degrees of freedom.
triangular(value,halfwith,dof) Creates an instance of UncertainInput having

u(x) = halfwidth√
6

, x = value,
and dof effective degrees of freedom.

beta(value,p,q,dof) Creates an instance of UncertainInput having
u(x) =

√
pq

(p+q+1)(p+q)2 , x = value,

and dof effective degrees of freedom.
arcsine(value,dof) This is an alias for beta(value, 0.5, 0.5).

Table 8: Methods to approximate the uncertainty of various distributions

ods in UncertainInput to create leaf nodes for various distributions shown in Table 8. The
distributions are described in detail in Appendix B.1.

We demonstrate the use as well as the integration of physical quantities in Section 7. A complete
interface description of the classes is available in Appendix C.

3.4. Discussion

In Section 3 we presented a widely accepted standard for the uncertainty propagation, namely the
GUM [3]. However, this standard only describes the evaluation of functions that have one scalar
output and several scalar input parameters that can be correlated. Furthermore, it proposes the use
of the Gaussian error propagation law. This law linearizes the physical model in the environment
of the expected output parameter. In general this results only in an approximate solution. The
GUM also proposes a technique to define confidence intervals using the Welch-Satterthwaite for-
mula. However, this approach is a proven approximation (see Hall and Willink [23]). A technique
that propagates the uncertainty more accurately will be discussed in Section 5.

We also presented the GUM tree a software pattern that encapsulates the Gaussian error prop-
agation law. It allows decomposing analytical model functions and evaluates the combined stan-
dard uncertainty. Its accuracy is only limited by the destination platform. We have shown that

22

this pattern can be extended to evaluate the effective DOF of a model as well. Unfortunately, this
software pattern has been patented (see U.S. Patent 7,130,761 [24]) limiting its application areas.

In Section 4 we present an extension of the GUM tree that can be used to evaluate the uncer-
tainty of complex-valued quantities. We will also show that the results from the evaluation are
conforming to the GUM [3]. In Section 7 we provide a variety of examples to demonstrate the
use of our design as well as the integration of physical units.

23

24

4. Propagation of Uncertainty of Complex-Valued Quantities

We describe the evaluation of uncertainty of complex-valued quantities in this section. The ap-
proach described here is an extension of the approach for strictly scalar-valued quantities. Our
approach to evaluate the uncertainty of complex-valued quantities extends the proposals of Will-
ink and Hall [25] and Hall [7,18]. We begin by describing our extension of Hall’s [7,18] proposals
that evaluate of the combined standard uncertainty for complex-valued models in Section 4.1. Af-
ter that, we present an approach to evaluate confidence regions for complex-valued models in
Section 4.2. A conclusion follows in Section 4.3.

4.1. Evaluating the Combined Standard Uncertainty of Complex-Valued Models

In this section we evaluate two approaches to evaluate the uncertainty of complex-valued models.
They seem to return different solutions because they have different input parameters. We prove
in Appendix B.4 that both approaches return the same result. The standard method we present
in Section 4.1.1 expresses the uncertainty of a complex-valued quantity as a special case of an
evaluation of an uncertain multivariate quantity. The uncertainty of the influence quantities of a
multivariate model are expressed using a covariance matrix. However, the method presented in
Section 4.1.2 evaluates the uncertainty using uncertainty of the real- and imaginary part of each
influence quantity and their correlation.

4.1.1. The Hall Proposal Based on a Covariance Matrix of the Influence Quantities

The approach described by Hall [18] is based on the adaptation of the Gaussian error-propagation
law (see Section 3). He extends the Gaussian law of error propagation to bivariate functions
and applies this extension to complex-valued quantities. Since the Gaussian error propagation
law makes use of partial derivation, the model function must be complex differentiable, and thus
meet the conditions of the Cauchy-Riemann equations (see Appendix B.5). Therefore Hall’s [18]
approach is only applicable to a limited set of functions of all complex functions.

Suppose a measurement process is described by the bivariate function 13 and a countable finite
sample set of size n is available that describes the complex-valued inputs of the model.

y = f(x1,x2, . . . ,xm)
= f1(x1,x2, . . . ,xm)+ j f2(x1,x2, . . . ,xm)

y := y1 + jy2

xi := x1i + jx2i

y1,y2,x1i,x2i ∈ R
i = 1,2, . . . ,m (13)

• the variables xi express the complex-valued input parameters.
• the variabe y expresses the complex-valued output parameter.
• Hall models complex functions as bivariate functions. Therefore the complex-valued model

function f can be split into a pair of functions f1 and f2 that model the real and imaginary
part respectively.

Hall’s [18] approach is based on the assumption that the complex-valued samples are taken
from a bivariate normal distribution (see Appendix B.1.6). In order to propagate the uncertainty

25

of the input quantities, one has to evaluate the uncertainty of each complex-valued input quantity.
Since the samples are generated using a bivariate normal distribution, one has to estimate the
mean and the covariance matrix of the distribution of each input quantity. The Formulas 14 show
the evaluation of the mean and the covariance matrix based on a countable finite sample of size n
set for each input quantity k = 1,2, . . . ,m [18].

x̂k =

[
n

∑
i=1

x1ik,
n

∑
i=1

x2ik

]

Vk =
[

v11 v12
v21 v22

]
vi j :=

1
n(n−1) ∑

k=1
n(xi jk− x̂ik)(x jik− x̂ jk) i = 1,2; j = 1,2

(14)

• x1ik expresses the real part of one sample i of the complex-valued input parameter xk.
• x2ik expresses the imaginary part of one sample i of the complex-valued input parameter

xk.
• x̂k is the result of the estimation and expresses the estimated mean value. It is expressed

as a two-component vector. Its real- and complex components are expressed using x̂1k and
x̂2k respectively.

• Vk describes the uncertainty of the complex-valued input parameter xk using a (2× 2)-
covariance matrix.

Consequently, each input quantity xk is described using an estimated mean value x̂k and an
associated covariance matrix Vk.

Hall describes the Gaussian error-propagation law in matrix-form as shown in the Equations 15.
Note that the elements of the vector x are the real parts (x1k) and imaginary parts (x2k) of the input
quantities zk ; k = 1,2, . . . ,m.

Vy =
df

dx
Vx

(
df

dx

)T

df

dx
=

 d f1

dx11

d f1

dx21

d f1

dx12

d f1

dx22
. . .

d f1

dx1m

d f1

dx2m
d f2

dx11

d f2

dx21

d f2

dx12

d f2

dx22
. . .

d f2

dx1m

d f2

dx2m


x = [x11,x21,x12,x22, . . . ,x1m,x2m] (15)

• The matrix Vx expresses the input uncertainty. It is the (2m× 2m)-covariance matrix that
expresses the input uncertainty of all complex input parameters as well as their covariance.
It is composed of (m×m)-sub matrices, denoted as Vi j, that describe the correlation of the
input quantities xi and xj (i = 1, . . . ,m; j = 1, . . . ,m). The matrices Vii on the principal
diagonal are formed of the matrices Vk derived by Formula 14.

• The matrix ∂f
∂x is the (2× 2m)-Jacobian matrix of the model function as shown in Equa-

tion 13. The first row contains the partial derivates of the model with respect to the real
parts of each input parameter, the second row contains all partial derivates with respect to

26

the imaginary parts of each input parameter.
• The (2×2)-matrix Vy is the outcome of the computation and expresses the combined stan-

dard uncertainty. The principal diagonal contains the squared uncertainty of the real- and
imaginary parts of the output parameter. The other elements express the covariance of the
real- and the imaginary part.

Since the Cauchy-Riemann equations are met per definition, one can obtain the Jacobian matrix
of a complex function using the complex Jacobian matrix of it with respect to its input parameters.
Consider the operation f(z1,z2) = z1 ·z2. Its partial derivates are shown in the Equations 16.

∂ f
dz1

= z2

∂ f
dz2

= z1 (16)

Thus, the complex Jacobian matrix is the matrix [z2,z1]. Using the Cauchy-Riemann Equa-
tions (see Appendix B.5) one obtains the Jacobian matrix shown in Equation 17.

A1 := Re(z2)
= a2

B1 := Im(z2)
= b2

A2 := Re(z1)
= a1

B2 := Im(z1)
= b1

J =
[

A1 −B1 A2 −B2
B1 A1 B2 A2

]
=

[
a2 −b2 a1 −b1
b2 a2 b1 a1

]
(17)

In order to propagate the uncertainty of the input quantities, an implementation of the algorithm
described above must propagate the Jacobian matrices along with the value of the respective input
quantities through the model. The model itself can be decomposed into several intermediate steps
as described in Section 3. Hall [18] provides a brief example implementation of the decomposition
and evaluation of complex uncertainty in C++. The patterns he used are not directly applicable
for our purpose. In Hall’s [18] example implementation the number of complex-valued input
quantities must be known beforehand in order to maintain a global covariance matrix. From our
perspective, this limits the convenience of a dynamic model creation. We desire a design that
supports modifications to the model without having to reshape the covariance matrix for every
modification to the model. From our perspective, it is in practice also rare that uncertain input
quantities are always correlated. Thus, a design should also implement this assumption in order
to minimize the computation and memory overhead of maintaining a global covariance matrix.

27

4.1.2. The Hall Proposal Based on Correlation Coefficients of the Influence Quantities

Another approach to propagate uncertainty has also been described briefly by Hall in Appendix
C.2 in [7]. Unfortunately, he does not provide any direct reference to [18]. Therefore we val-
idated his approach by showing that his approach proposed in [7] returns the same results as
his approach proposed in [18] (see Appendix B.4). His approach described in [7] computes the
covariance matrix Vy that expresses the combined standard uncertainty more efficiently for a soft-
ware implementations as the approach described in Section 4.1.1. We show this approach in the
Equations 18.

Vy =
m

∑
i=1

m

∑
i= j

Ui(y)Ri j(X)Uj(y)T

Uj(y) =

[
∂ f1
dx1 j

∂ f1
dx2 j

∂ f2
dx1 j

∂ f2
dx2 j

]
×
[

u(x1 j) 0
0 u(x2 j)

]
Ri j(X) =

[
r(x1i,x1 j) r(x1i,x2 j)
r(x2i,x2 j) r(x2i,x2 j)

]
(18)

• The (2×2)-matrix Vy expresses the combined standard uncertainty as it does in the Equa-
tions 15.

• The matrix Uj(y) models the propagated uncertainty of the influence quantity zj . It is the
result of the multiplication of the Jacobian matrix with respect to zj and the uncertainty of
the real part u(x1 j) and the imaginary part u(x2 j).

• The matrix Ri j(X) expresses the correlation between two complex-valued influence quan-
tities zi and zj .

Using the Formulas 18 instead of the Formulas 15 has several advantages:
1. The computation is carried out using (2×2)-matrices only.
2. The input uncertainty is decomposed into a matrix of the correlation coefficients and the

uncertainty of the real and the imaginary part.
3. The correlation of the input quantities can be expressed by a function that returns (2×2)-

matrices only.
Point 1 allows hardwiring the matrix operations into software without having to support matrix

operations in general. This property reduces the computation effort since dimensional checks of
the matrix operands are not necessary. Point 2 allows decomposing the model into its structure and
the correlation of the input quantities. Thus, we can store the correlation coefficients separately
from the model. Because of point 3, we can implement the supposable sparse correlation matrix
as a hash-table and a set of rules.

1. If i 6= j and the input quantities zi and zj are uncorrelated, then zero 02×2 is returned.
2. If i = j and the real and the imaginary part of the input quantity zi are uncorrelated, then

unity I2×2 is returned.
3. Otherwise, the (2× 2)-matrix of the correlation coefficients is returned. This can be im-

plemented by looking up the matrix of correlation coefficients in a hash-table that has been
previously set to the matrix of correlation coefficients of the input quantities zi and zj .

This approach seems to have a performance drawback since we use a hash-table instead of
indexing an array as proposed by Hall in [18]. However, we do not have to fill the covariance
matrix initially. We also believe that this performance drawback is ruled out by being able to

28

create the model dynamically. In contrast to Hall’s [18] proposal, we do not have to provide
explicit indices for the input quantities in order to obtain their matrix of correlation coefficients.
Therefore, we do not have to know the number of complex-valued input quantities beforehand.
We also assume that the likelihood of a collision of the hashing-algorithm is very low, because the
matrix of correlation coefficients is sparse for the majority of practical applications. Therefore it
is from our perspective reasonable to assume that the lookup of the correlation coefficients takes
place in constant time (see Goodrich and Tamassia [26]).

After having discussed an extension of Hall’s [18] approach used for our design, we describe
the software structure and the implementation of our design by example.

y = sin(z1 +z2) (19)

As an example, suppose one has the model shown in Equation 19. For the sake of simplicity
let’s assume that the inputs are uncorrelated. Using the decomposition approach, described in
Section 3, one can decompose the equation into the intermediate steps shown in the Equations 20
and 21.

f1 = z1 +z2 (20)

f2 = sin(f1) (21)

In order to propagate the uncertainty of the quantities z1 and z2, one has to obtain the matrices
Uj(z1) and Uj(z2) at first. Because of the chain-rule for the derivation of multivariate functions
(see Wikipedia [27]), the derivation of composite functions is expressed as product of the Jacobian
matrices. Let J(fi) denote the Jacobian matrix of the function fi, then one obtains Equation 25
after the intermediate steps shown in the Equations 22, 23, and 24.

J(z1) =
[

u(x11) 0
0 u(x12)

]
(22)

J(z2) =
[

u(x21) 0
0 u(x22)

]
(23)

J(f1) = J(z1)+J(z2) (24)

J(f2) = M(cos(f1))×J(f1) (25)

This example reveals the requirements of the model building blocks of our design. We need a
class that models the input value as well as its input uncertainty. In addition, we need classes that
perform the intermediate operations. In Figure 12 we show such a design.

All intermediate operations as well as the input operations are specialized from the abstract
class CUncertainComponent. Its method get_value() provides an interface for the cal-
culation of the value of the component with respect to its inputs. The method get_a_value()
provides an interface for the conversion of the complex value to a column vector. The method
get_uncertainty(x : UncertainComponent) provides an interface for calculating
the matrix Uj(x). The method depends_on() provides an interface for returning a list of
uncertain input quantities the instance depends on.

There are three specializations of the class CUncertainComponent. The classes
CUncertainInput, BinaryOperation, and UnaryOperation. The class

29

CUncertainComponent

depends_on() : List
get_uncertainty(x : CUncertainInput) : matrix
get_value() : Complex
get_a_value() : matrix

CUncertainInput

depends_on() : List
get_value() : Complex
get_uncertainty(x : CUncertainInput) : matrix
get_a_value() : matrix

__jacobian : matrix
__value : matrix

CUnaryOperation

depends_on() : List
get_silbling() : CUncertainComponent

__sibling : CUncertainComponent

CBinaryOperation

depends_on() : List
get_left() : CUncertainComponent
get_right() : CUncertainComponent

__left : CUncertainComponent
__right : CUncertainComponent

Sine

get_value() : Complex
get_uncertainty(x : CUncertainComponent) : matrix
get_a_value() : matrix

Addition

get_value() : Complex
get_uncertainty(x : CUncertainComponent) : matrix
get_a_value() : matrix

Figure 12: The class hierarchy of our example

CUncertainInput expresses the inputs of the model. Its member __value stores the
input value z = x1 + jx2 and the member __uncertainty stores the input uncertainty as
described by Equation 18. The implementation in Python of this class is shown in Listing 4.

1 c l a s s C U n c e r t a i n I n p u t (CUncer ta inComponent) :

3 def _ _ i n i t _ _ (s e l f , va lue , u n c e r t a i n t y) :
s e l f . _ _ v a l u e = v a l u e

5 s e l f . _ _ u n c e r t a i n t y = u n c e r t a i n t y

7 def g e t _ v a l u e (s e l f) :
re turn s e l f . _ _ v a l u e

9

def g e t _ a _ v a l u e (s e l f) :
11 re turn m a t r i x ([[s e l f . _ _ v a l u e . r e a l] ,

[s e l f . _ _ v a l u e . imag]])
13

def g e t _ u n c e r t a i n t y (s e l f , x) :
15 i f (x i s s e l f) :

re turn s e l f . _ _ u n c e r t a i n t y
17 re turn z e r o s ((2 , 2))

Listing 4: The Python implementation of the uncertain input quantities
This code sample also shows the implementation of the partial derivation in the method

get_uncertainty(). If the parameter x is identical to this Instance, denoted as self, it
returns the input uncertainty. Otherwise it returns zero O2×2. This is an analogous approach

for calculating the uncertainty of a variable
∂x
dx

u(x) = u(x) and a constant
∂x
dc

u(c) = 0 for the
scalar-valued case.

In order to demonstrate the creation of a Jacobian matrix we present the method
get_uncertainty() of the class Sine in Listing 5. This implementation shows two ma-

30

jor properties. First, we used the Cauchy-Riemann equations (see Appendix B.5) to derive the
Jacobian matrix for the operation sin(z). Second, we show the application of the chain rule for
multivariate functions. The Jacobian matrix of the sine function is expressed in Python by the
variable jac and the code fragment self.get_sibling().get_uncertainty(x) ex-
presses the Jacobian matrix of the sibling. The code shows the implementation of the matrix
Uj(z) (shown in the Equations 18).

For the definition of their Jacobian matrices see Appendix B.6.
This scheme is also different from Hall’s [19] proposal. He propagated the Jacobian matrices

as two-component vector and then applied the transformation, shown in Equation 81, to the result.
Therefore his approach is limited to complex functions that fulfil the Cauchy-Riemann equations.
In contrast, we can define Jacobian matrices for other complex functions as well.

1 c l a s s Sine (U n a r y O p e r a t i o n) :

3 . . .

5 def g e t _ u n c e r t a i n t y (s e l f , x) :
j a c _ v = cos (s e l f . g e t _ s i b l i n g () . g e t _ v a l u e ())

7 j a c = m a t r i x ([[j a c _ v . r e a l , −j a c _ v . imag] ,
[j a c _ v . imag , j a c _ v . r e a l]])

9 re turn j a c * s e l f . g e t _ s i b l i n g () . g e t _ u n c e r t a i n t y (x)

11 . . .

Listing 5: The Python implementation of the sine-operator
The calculation of the matrix Uj(zi) for binary functions is done accordingly. We show our

implementation of the method get_uncertainty(self, x) of the class Addition in
Listing 6.

We used the same schemes to evaluate the uncertainty of the operations +,-,*,/,**,~,|
shown Table 2 as well as the NumPy ufuncs, shown in Table 6.

1 c l a s s A d d i t i o n (B i n a r y O p e r a t i o n) :

3 . . .

5 def g e t _ u n c e r t a i n t y (s e l f , x) :
re turn s e l f . g e t _ l e f t () . g e t _ u n c e r t a i n t y (x) \

7 + s e l f . g e t _ r i g h t () . g e t _ u n c e r t a i n t y (x)

9 . . .

Listing 6: The Python implementation of the add-operator
After having described the building blocks of software to calculate Uj(y), we describe the

components that allow the computation of the Equations 18. These equations reveal the funda-
mental requirements for our software design. The evaluation of the combined standard uncertainty
as well as the management of the correlation matrix is evaluated using a Context class. This
is similar to Hall’s [18] proposal. He also proposed to use a class Context class to manage the
covariance matrix of the input quantities. We show our design of the class Context in Figure 13.

The methods set_correlation() and get_correlation() provide an interface to
the correlation matrix. We implemented the correlation matrix using a hash-table as described

31

Context

set_correlation(x : CUncertainComponent,y : CUncertainComponent,corr : matrix) : void
get_correlation(x : CUncertainComponent,y : CUncertainComponent) : matrix
dof(x : CUncertainComponent) : Double
uncertainty(x : CUncertainComponent) : matrix

__correlation : Dictionary

Figure 13: The class Context

earlier in this section. The code of these two methods is shown in Listing 7.

1 c l a s s C o n t e x t :

3 . . .

5 def s e t _ c o r r e l a t i o n (s e l f , x , y , c o r r) :
_ _ c o r r e l a t i o n [(x , y)] = c o r r

7

def g e t _ c o r r e l a t i o n (s e l f , x , y) :
9 i f (_ _ c o r r e l a t i o n . has_key ((x , y))) :

re turn _ _ c o r r e l a t i o n [(x , y)]
11 e l s e :

i f (x i s y) :
13 re turn m a t r i x ([[1 , 0] , [0 , 1]])

e l s e
15 re turn z e r o s ((2 , 2))

17 . . .

Listing 7: The Python implementation of the class Context
The native Python type dictionary implements the hash-table. It is instanced by the vari-

able __correlation. The keys of this hash-table are pairs consisting of references to the
input quantities (i.e. (x,y)). Line 6 shows the insertion of a key-value pair into the dictionary.
Line 10 shows the retrieval of a value. The code also shows the implementation of the rules that
express the correlation matrix as described earlier this section.

1 c l a s s C o n t e x t :

3 . . .

5 def u n c e r t a i n t y (x) :
i n p u t s = x . depends_on ()

7

sum = z e r o s ((2 , 2))
9

f o r i in i n p u t s :
11 f o r j in i n p u t s :

sum += x . g e t _ u n c e r t a i n t y (i) \
13 * s e l f . g e t _ c o r r e l a t i o n (i , j) \

* (x . g e t _ u n c e r t a i n t y (j)) . T
15

32

re turn sum
17

. . .

Listing 8: The Python implementation of the evaluation of the combined standard uncertainty evalu-
ation for complex-valued models

Method uncertainty() performs the combined standard uncertainty evaluation. The
code is shown in Listing 8. The summation operators ∑

m
i=1 ∑

m
i= j are implemented by the two

outer loops which iterate over the input quantities of the model expressed by the variable x.
The correlation matrix Ri j is expressed by the call self.get_correlation((i,j)).
The uncertainty Ui(zi) and the transposed uncertainty Uj(zj)T are expressed by the
calls x.get_uncertainty(i) and (x.get_uncertainty(j)).T. The variable u_c
expresses the combined standard uncertainty Vy.

4.2. Evaluating Confidence Regions of Uncertain Complex-Valued Models

After having discussed the evaluation of the combined standard uncertainty for complex-valued
functions and described our implementation, we shall describe a technique to evaluate the effective
degrees of freedom (DOF) of a complex-valued model in this section. The evaluation of the DOF
is needed to create confidence intervals/regions for quantities. The approach for scalar-valued
models has already been discussed in Section 3.

An approach to calculate the effective degrees of freedom of vector-valued models is discussed
by Willink and Hall in [25] and applied to complex-valued models by Hall in Appendix C.3 in [7].
According to Hall [7], the DOF are calculated in two steps. At first the covariance matrices of the
input quantities are calculated, shown in Equation 26. After that, the elements of these matrices
and the degrees of freedom of the inputs, denoted as νi, are used to calculate the effective degrees
of freedom, shown in the Equations 27.

Vi =
[

vi11 vi12
vi21 vi22

]
= Ui(z)Ri j(X)

(
Uj(z)

)T (26)

A = 2

(
m

∑
i=1

vi11

)2

D =
m

∑
i=1

vi11

m

∑
i=1

vi22 +

(
m

∑
i=1

vi12

)2

F = 2

(
m

∑
i=1

vi22

)2

a = 2
(∑m

i=1 vi11)
2

νi

d =
m

∑
i=1

(
vi11vi22 + v2

i12
)

νi

f = 2
m

∑
i=1

v2
i22
νi

33

νeff =
A+D+F
a+d + f

(27)

If the conditions of the central limit theorem are met, the effective degrees of freedom can be
used in combination with the quantile function of the F2,νeff−2(α)-distribution in order to obtain
the confidence region. The confidence region is then given by Equation 28. The vector y denotes
the value of the model with respect to its inputs and the matrix Vy denotes the combined standard
uncertainty. The parameter α expresses the level of confidence.

(x−y)T Vy (x−y)≤ 2(n−1)
(n−2)

F2,νeff−2(α) (28)

Since the evaluation of the DOF as well as the evaluation of the confidence region depends on
the methods of class Context, we also placed the evaluation of DOF into the class Context
as proposed by Hall [7]. Since there is no analytical way to obtain values from the quantile-
function of the F2,νeff−2(α)-distribution, we omitted the evaluation of the confidence interval. Our
implementation of the method dof of the class Context is shown in Listing 9. The listing
shows that we implemented the two-step procedure as shown in the Equations 26 and 27. The
code fragment i.get_dof() returns the degrees of freedom assigned to the input quantity i.

c l a s s C o n t e x t :
2

. . .
4

def dof (x) :
6 i n p u t s = x . depends_on ()

8 # C re a t e t h e c o v a r i a n c e−m a t r i c e s o f each i n p u t q u a n t i t i y
f o r i in i n p u t s :

10 f o r j in i n p u t s :
cov [i] += x . g e t _ u n c e r t a i n t y (i) * s e l f . g e t _ c o r r e l a t i o n (i , j) * (

x . g e t _ u n c e r t a i n t y (j)) . T
12

A = 0 . 0 ; D = 0 . 0 ; F = 0 . 0
14 a = 0 . 0 ; d = 0 . 0 ; f = 0 . 0

16 # C a l c u l a t e t h e c o e f f i c i e n t s
f o r i in i n p u t s :

18 A += cov [i] [1] [1]
D += cov [i] [1] [2] ** 2

20 F += cov [i] [2] [2]
a += cov [i] [1] [1] / i . g e t _ d o f ()

22 d += (cov [i] [1] [1] * cov [i] [2] [2] + cov [i] [1] [2] ** 2) / i .
g e t _ d o f ()

f += cov [i] [2] [2] / i . g e t _ d o f ()
24

D += A * B
26 A = 2 . 0 * A ** 2 . 0

F = 2 . 0 * F ** 2 . 0
28 a = 2 . 0 * a

f = 2 . 0 * f
30

R e t ur n t h e e f f e c t i v e d e g r e e s o f f reedom

34

32 re turn (A + D + F) / (a + d + f)

34 . . .

Listing 9: The Python implementation of the evaluation of the effective degrees of freedom of
complex-valued models

4.3. Conclusion

We discussed the evaluation of complex-valued uncertainties in this section, and we described the
evaluation of the combined standard uncertainty that is expressed by a (2×2)-covariance matrix.
We also validated Hall’s [7] approach to evaluate the combined standard uncertainty. Then we
described a technique that can be used to create a confidence region for uncertain complex-valued
models. We provided an abstract design as well as implementations in the Python programming
language for Hall’s proposal using correlation coefficients.

35

36

5. Propagation of Uncertainty Using Bayesian Inference

After having described two approaches that make use of the Gaussian error propagation law,
in its scalar form (see Section 3) and its bivariate form (see Section 4), we describe another
method for propagating uncertainty in this section based on Bayesian inference. This statistical
discipline allows incorporating a degree of belief or prior information into the model of a statistical
process. Hence, it allows including assumptions about measured values in our case, such as known
systematic effects in our model before any data was evaluated. Therefore, statistical effects (Type-
A evaluation) and systematic effects (Type-B evaluation) can be included in a common model.

We present and illustrate Weise’s and Wöger’s [4] method in Section 5.2. Furthermore, we
provide an abstract description of a software design that can be used as a roadmap to shape future
work projects implementing this method in Section 5.3. We begin introducing Bayesian inference
in Section 5.1.

5.1. Fundamentals of Bayesian Statistics

According to Hüllermeier [28], the concept of the Bayesian approach is based on the assumptions
shown below:

• probability expresses a degree of belief, no limiting frequency.
• probability statements can be made about parameters of a statistical model, although they

are fixed.
• statements of parameter x, such as confidence intervals and expected values, are inferred

from a probability distribution fx(x). Statistical procedures are assessed by their relative
long run frequencies.

Although Bayesian inference uses the same laws of probability calculus, its semantics are dif-
ferent from the classic Frequentists approach shown below [28]:

• probability is described by relative frequencies that are objective properties of the real
world.

• parameters are fixed unknown constants; therefore, no useful probability statements can me
made about them.

From the viewpoint of the evaluation of the uncertainty in measurements, the following features
of Bayesian inference can be concluded and are realized by the method described in [4]:

1. probability statements about the measured data can be made before any data has been seen.
2. artifacts arising from systematic effects can be included in the statistical model.
3. confidence intervals or regions of the measurement result can be directly inferred from

the statistical distribution of the measurement model; therefore, they are more or equally
accurate compared to those derived with classical approximate methods.

In contrast to point 1, the Frequentist approach does not allow to use information from previous
measurements, since the statistical models are assessed by relative long run frequencies. Points
2 and 3 are also novel compared the classical methods described in the Sections 3 and 4 where
we used the Welch-Satterthwaite (W-S) formula to evaluate the effective degrees of freedom.
These were used to create a coverage factor k describing the confidence interval [x−kuc,x+kuc].
According to Hall and Willink [23], W-S is only an approximate method. They also show various
cases in which W-S returns less accurate confidence intervals than other methods. Because of the
approximation using W-S, the Bayesian evaluation of confidence intervals will be more or equally
accurate compared to W-S, if the uncertainty arising from systematic effects can be expressed
analytically.

37

Name Notation Prior information about the parameter x
Trapeze function trapmf(a,b,c,d,x) . . . defined within [a,d];

true value likely within [b,c].
Triangular function trimf(a,b,c,x) . . . defined within [a,c];

true value likely to be b.
Rectangular function rmf(a,b,x) . . . defined within [a,b];

no information other information given.

Table 9: A selection of fuzzy membership functions

After describing the key features of Bayesian inference, we enumerate the steps of Bayesian
inference. According to Hüllermeier [28], inference about a parameter is done in the main steps:

• define a prior distribution fp(θ) that expresses the initial belief about the parameter θ ,
• choose a statistical model fp(θ |x) that expresses the belief about the data x given the param-

eter θ ; this function is referred to as likelihood function,
• update the degree of belief after observing the data by evaluating the posterior distribution

fx(x|σ) = c fp(θ |x) fp(θ),
• confidence intervals, the expected value, and the variance can be inferred from the posterior

distribution.
In the following chapters we will use the term prior information instead of degree of belief in

order not to imply subjectivity.

5.2. Propagation of Uncertainty

In this section we present the propagation of uncertainty using Bayesian inference, described by
Weise and Wöger [4]. At first we describe in Section 5.2.1 the evaluation of the prior distribu-
tion based on prior information about the parameters. After that we describe in Sections 5.2.2
and 5.2.3 how the observed data is used to generate the posterior distribution. Finally we show in
Section 5.2.4 how to infer the combined standard uncertainty, the expected value and confidence
intervals from it.

5.2.1. Prior Information

According to Weise and Wöger [4], the available prior information is the model prior and the
data prior. The model prior is a set of rules describing prior information available about input
and output parameters of a model. It also includes the physical model itself, we describe in
Section 5.2.2. We infer from Weise’s and Wöger’s [4] description that these rules must be defined
continuously and limited within 0 and 1.

The rules can be interpreted as fuzzy membership functions (see Börcsök [29]) and can be
combined using fuzzy operators. We provide a list of fuzzy operators in Table 10 and some
exemplary membership functions in Table 9. The membership function itself expresses the prior
information that is available about a parameter. It may be available as a known systematic effect;
for example, the working range of the equipment measuring a parameter. Thus values measured
outside of the range are unlikely.

Suppose scalar parameter x is only defined within the interval [a,b]. It can be expressed by the
rectangular membership function rmf(a,b,x), shown in Figure 14(b) and implies that all values

38

Operation Notation Definition Interpretation
Negation ¬r 1− r(x) The complement of the rule r

applies to parameter x.
And r1∧ r2 r1(x)r2(x) The the rules r1 and r2

apply to parameter x.
Or r1∨ r2 r1(x)+ r2(x)− r1(x)r2(x) The rules r1 or r2 apply to x.

Table 10: A selection of fuzzy operators

within this interval are equally likely. If no prior information exists about a parameter, all values
are equally likely. It can therefore be expressed using 1 for all values, shown in Figure 14(a).
Suppose we are certain about a parameter being close to the center b of a well-defined interval
[a,c]. We can express this information using a triangular function trimf(a,b,c,x). If a parameter
x is defined in the interval [a,b] and also in the interval [c,d], then this relation can be expressed
by the expression rmf(a,b,x)∨ rmf(c,d,x) using the fuzzy ∨-operator. The result is shown in
Figure 14(c).

(a) The Unity Membership Func-
tion

(b) The Rectangular Membership
Function

(c) Using the Or Operator

Figure 14: Several fuzzy membership functions

To express these rules conveniently for all input and output parameters and for other reasons we
described in the following sections, Weise and Wöger [4] introduce the vector Z which contains
the elements of the vectors of outcomes Y and input parameters X . The mapping and its notation
are shown in Equation 29. We denote the rules of the model prior as g(Z). They contain the prior
information about the outcomes and input parameters of the model, except for the physical model
itself. We will describe the compilation of the model prior in Section 5.2.2.

Z = {Y ,X}= (y1,y2, . . . ,ym,x1,x2, . . . ,yn) (29)

The data prior expresses the prior information about the distribution of the input parameters.
A multivariate normal distribution is chosen for many technical applications (for a description of
the distribution see Appendix B.1.5). Weise and Wöger [4] describe the evaluation of other cases
where another distribution was chosen. We limit our description to normally distributed input
data.

Because of being able to model systematic effects as fuzzy membership functions, we do not
necessarily need to make use of approximate methods, such as W-S (see Section 3) combining
statistical effects and systematic effects. If the prior information of a systematic effect can be
expressed using Fuzzy rules, the results will be more or equally accurate to the results obtained
using W-S and the methods described in Sections 3 and 4. Since W-S is a proven approximationm,

39

Hall and Willink [23] present various examples where W-S returns less accurate results than other
methods, such as Monte-Carlo.

5.2.2. The Likelihood Function Representing the Model Prior

Weise and Wöger [4] refer to the likelihood function as the model prior. We already described
in Section 5.2.1 that the model prior is a set of rules that describe the prior information about the
input and output parameters and the physical model itself.

y = f (x) (30)

0 = M(y,x) = M(z) = y− f (x) (31)

Suppose our physical model is described by Function 30. Weise and Wöger [4] transform such
functions into a form that fits 0, shown in Equation 31. They combine the two arguments using
Transformation 29 we discussed in Section 5.2.1.

5.2.3. The Posterior Distribution

To infer about the input and output parameters of the model, we need a posterior distribution that
expresses our information about the measured values and the uncertainty of them. In this section
we describe the evaluation of the measured input quantities and the construction of the posterior
distribution.

As we described in Section 5.2.1, we assume that the input data is normally distributed and
thus can be expressed by a multivariate normal distribution with the parameters E(x), the vector
of expected values of the influence quantities, and the covariance matrix V(x) of the vector of
influence quantities x needed to be evaluated. Formula 32 estimates the vector of expected values
and Formula 33 estimates the covariance matrix, based on given measurements x1,x2, . . . ,xn.
These properties can also be a result of a previous evaluation using this method of uncertainty
propagation. The data prior would be the obtained posterior distribution and not necessarily the
multivariate normal distribution. Thus, this method can be applied recursively.

x̂ =
1
n

n

∑
i=1

xi (32)

S =
1

n−1

n

∑
i=1

(xi− x̂)(xi− x̂)T (33)

fa(z) = C normpdf(x, x̂,S)δ (M(z))g(z) (34)

C =
∫

∞

−∞

normpdf(x, x̂,S)δ (M(z))g(z)∂z (35)

The posterior distribution is given by Equation 34. The function normpdf(x, x̂,S) denotes
the multivariate normal distribution using the parameters Σ = S and µ = x̂. Constant C is a
normalizing constant ensuring that the conditions of a probability density functions are met. It
can be evaluated using Equation 35.

40

5.2.4. Reporting the Uncertainty

The expected value E(z) and the covariance matrix V(z) are inferred from fa(z) using the Equa-
tions 36 and 37. Since we included prior information in our model, we also have to report the
uncertainty of the input arguments after data has been observed. Therefore, the combined stan-
dard uncertainty is expressed by Uz = V(z). It describes the uncertainty of the outcomes, the
input parameters and their correlation based on the physical model, the observed data, and prior
information (i.e. artifacts arising from systematic effects). The same applies to the expected value.

E(z) =
∫

fa(z)z∂z (36)

Uz =
∫

(z−E(z))(z−E(z))T
∂z (37)

According to Weise and Wöger [4], the posterior distribution fa(z) should also be included in
the report of uncertainty. They suggest the following reasons for consideration:

• the distribution may not be convex.

• the physical model may not be linear within the region of E(z); in this case it may be
helpful to use the mode instead of the expected value of fa(z).

Another reason for including fa(z) is enabling recursion of the method. The outcomes of
this evaluation, namely the expected value E(z), the combined standard uncertainty Uz, and
the posterior distribution fa(z), can be used as inputs for another evaluation. In this case fa(z)
expresses the uncertainty of the input quantities, E(z) expresses the expected value of the input
quantities, and fa(z) is the uncertainty of the input arguments.

In order to compare the outcomes of this method to the outcomes of the methods described in
the Sections 3 and 4, they have to be marginalized. In Section 3 the combined standard uncertainty
as well as the expected value was only evaluated of the output parameter of the model. Therefore,
the distribution fa(z) must be transformed to fx(y) by integrating out the other parameters, shown
in Equation 38.

fx(y) =
∫

∞

x1=−∞

∫
∞

x2=−∞

. . .
∫

∞

xn=−∞

fa(z)∂x1∂x2 . . .∂xn (38)

The expected value E(y) and the covariance matrix V(y) inferred from fx(y) have the same
dimensions as the outcomes of the methods described in the Sections 3 and 4. Hence, Bayesian
inference can be used to propagate the uncertainty of complex-valued quantities as well. In this
case the vector z consists of the sequence of real and imaginary parts of the parameters of the
model.

5.3. Software Design

Although the method is well described, there are various issues that have to be ruled out using
simplifications in order to implement this method in software:

1. At first, we are not aware of a method describing the integrals shown in the Equations 36
and 37 analytically in general; therefore, we need to evaluate them numerically. But a nu-
merical method can only approximate an unbounded integral in general. Therefore a soft-
ware implementation can only solve problems with a reasonable accuracy that are bounded.

41

2. All input and output quantities zi must be described by rules of the model prior. These rules
of the must be defined within finite intervals [ai,bi].

3. Complex rules can only be defined on single scalar input quantities. All rules are combined
using the operator ∧ expressing g(z).

The Equation 34 needs to be an integratable function that can be approximated by Monte-
Carlo (MC) integration (see Appendix B.2).

The simplifications one and two ensure that the integrals shown in the Equations 36 and 37 are
always bounded. The third simplification ensures that the numerical integration is applicable. In
addition, we limit our design to models having one scalar output parameter only.

Based on these simplifications our software design is divided into the following components:
• classes realizing the model rules and combinations of them,
• a class modelling the input quantities. They contain the model rules regarding the parame-

ter, and the expected value estimated using the observed data,
• several classes to construct the physical model, similar to the GUM-tree explained in Sec-

tion 3; these classes also evaluate the bounding contour of the integration,
• a class implementing the multivariate normal distribution,
• a class modelling a global context object that maintains the covariance matrix of the in-

put parameters; it also evaluates the posterior distribution to obtain the combined standard
uncertainty, and posterior expected value,

• a class implementing a MC integrator; the bounding contour of the MC integrator is defined
by the intervals [ai,bi] of the model rules of each parameter.

We start by describing the components that realize the model rules. Their class diagram is
shown in Figure 15.

Each individual rule has a starting value and an ending value. These values describe the range,
in which the rule is nonzero. These properties are available through the methods get_start
and get_stop. Furthermore, each rule assigns a value between [0,1] to each value of the respec-
tive parameter. The method get_value performs this mapping. Since these rules are used to
limit the bounding contour of the MC integration, they need to be consistent. We define a contour
being consistent if it has a finite volume. Thus, the values returned by the methods get_start
and get_stop must be finite to describe a closed contour. The method is_consistent
implements this test. The rules describing a single parameter can be constructed by combining
several atomic rules. We show some examples in Figure 15. The classes And, Or, and Not imple-
ment the respective fuzzy operations (see Table 10) combining model rules. Complex rules can be
created by calling the respective methods and, or, and not of an instance of ParameterRule.

Atomic building blocks can be implemented directly as sub-classes of ParameterRule.
Consider the triangular membership function (see Table 10) realized by the class Triangular.
Each atomic rule has to override the methods get_value, get_start, and get_stop. The
triangular membership function is defined by Equation 39. Obviously the parameters a and c are
the starting and ending values, and must therefore be returned by get_start and get_stop.
Other atomic rules can be defined in a similar way.

trimf(a,b,c,x) =


x−a
b−a a≤ x < b
c−x
c−b b≤ x < c
0 otherwise

(39)

After having described the creation of the model rules, we now describe compiling of the phys-
ical model. The building blocks are shown in Figure 16. Since we assume that the model can

42

bucomponents::ParameterRule

get_value(x : Float) : Float
get_start() : Float
get_stop() : Float
and(x : ParameterRule) : And
or(x : ParameterRule) : Or
not() : Not
is_consistent() : Boolean

BinaryRule

get_left() : ParameterRule
get_right() : ParameterRule

__left : ParameterRule
__right : ParameterRule

UnaryRule

get_sibling() : ParameterRule

__sibling : ParameterRule

And

get_value(x : Float) : Float
get_start() : Float
get_stop() : Float

Or

get_value(x : Float) : Float
get_start() : Float
get_stop() : Float

Not

get_value(x : Float) : Float
get_start() : Float
get_stop() : Float

Triangular

get_value(x : Float) : Float
get_start() : Float
get_stop() : Float

__start : Float
__stop : Float
__center : Float

Figure 15: The software design of the rules

43

be described analytically, we can decompose it into a dependency tree, as we described it in Sec-
tion 3. The class UncertainInput realizes an input parameter of a model. It contains the
expected value of the input available from previous evaluations or from the observed data stored
in the variable __expected_value. Furthermore, the class contains in addition the model
rule of the parameter, as described before. Assigning a value to the parameter is required for
the MC integrator we describe later this section. The value can be set and retrieved using the
methods set_value and get_value.

BUncertainComponent

depends_on() : List
get_value() : Float
add(x : BUncertainComponent) : Add
sin() : Sin
set_parameters(values : ndarray) : void
get_boundary() : ndarray
get_index(x : UncertainInput) : Integer
get_expected_values() : ndarray
get_expected_value() : Float
get_values() : ndarray

BinaryOperation

get_left() : BUncertainComponent
get_right() : BUncertainComponent
depends_on() : List

__left : BUncertainComponent
__right : BUncertainComponent

UnaryOperation

get_sibling() : BUncertainComponent
depends_on() : List

__sibling : BUncertainComponent

UncertainInput

get_rule() : ParameterRule
get_expected_value() : Float
get_value() : Float
set_value(x : Float) : void
depends_on() : List
eval_rule() : Float

__rule : ParameterRule
__expected_value : Double
__value : Double

Add

get_value() : Float
get_expected_value() : Float

Sin

get_value() : Float
get_expected_value() : Float

Figure 16: The software components describing the model prior

The input parameters are combined using operators similar to the approach described in Sec-
tion 3. We included the operators Add and Sin as examples. All operators must implement the
operation get_value and get_expected_value. These classes propagate the estimated
values of the input parameters estimating the expected value to the output parameter of the model.

Moreover, each uncertain component implements the methods set_parameters,
get_values, and get_expected_values. These are shortcuts used for the MC integra-
tion. The method set_parameters sets the parameters of input parameters of the model. The
method get_expected_values returns the parameters of all inputs. In order to obtain the
index of an input quantity to a vector, the method get_index can be used. The list of input
parameters is available using the method depends_on.

44

After explaining the building blocks of the model, we explain the management of global data
such as the covariance of the input parameters and the prior information about the output param-
eter. Following Hall’s [19] proposal, we pack these aspects into the class Context, shown in
Figure 17. An instance of this class has to be created prior to creating the model.

Context

input(exp_value : Float,variance : Float,rules : ParameterRule) : UncertainInput
set_covariance(x : UncertainInput,y : UncertainInput,cov : Float) : void
get_covariance(x : CUncertainInput,y : CUncertainInput) : Float
expected_value(model : BUncertainComponent) : Tuple
uncertainty(model : BUncertainComponent) : Tuple
result(model : BUncertainComponent) : Tuple
gen_cov_matrix(model : BUncertainComponent) : matrix

__covariance : Dictionary
__integrator : MCIntegrator
__changed : Boolean
__output_rule : ParameterRule

MCIntegrator

expected_value() : Tuple
uncertainty() : Tuple

__trials : Long
__normPDF : NormPDF
__model : BUncertainComponent
__output_rule : ParameterRule

NormPDF

evaluate(x : ndarray) : Float

__value : ndarray
__mu : ndarray
__sigma : matrixcreates

Figure 17: Global information is modelled by the class Context

The input parameters of the model are created using the factory method input. Its arguments
are the prior expected value of the input parameter, the variance of it (i.e. its squared uncertainty)
and the rules that express the prior information available. These rules have to be consistent. This
property can be checked by calling the method in_consistent of the instance of the rule. The
variance can be stored in a hash-table that forms the covariance matrix that can be accessed using
the methods set_covariance and get_covariance.

The posterior expected value and the combined standard uncertainty are obtained through the
methods expected_value and uncertainty. The results are reported as tuples. The ex-
pected value is reported as a one-dimensional array consisting of the posterior expected value
of the posterior distribution and the standard error of the numerical integration. The combined
standard uncertainty is reported as quadratic covariance matrix and the standard error of the nu-
merical integration. The abbreviation of both methods is a result that returns a tuple containing
the posterior expected value and the combined standard uncertainty. These methods invoke the
MC integrator. Because MC Integration converges slowly (see Appendix B.2), we assume the
integration will consume most computing time while evaluating uncertainty. Therefore, the re-
sults should be cached as private members as long as the model is not changed. We introduce
the flag __changed marking any changes to the model. As long as it is False the result of
the integration is cached. If it is not set, the integration is performed again. The methods input
and set_covariance unset this flag.

45

The MC integrator itself uses a multivariate normal distribution to evaluate the integrals shown
in the Equations 35, 36, and 37. We propose to perform the integration of all three formulas at
once reducing the computation overhead and the standard error, such that the same samples of the
parameter space are used as arguments for the three integrals. This procedure is also referred to
as correlated sampling (c.f Banks et al. [30]).

5.4. Discussion

Using Bayesian inference has several advantages compared to the classic methods described in
the Sections 3 and 4. The Bayesian approach allows incorporating prior information of the pa-
rameters into the uncertainty evaluation. This knowledge can be described conveniently by fuzzy
membership functions that can be either simple or complex functions created using a Fuzzy alge-
bra. The classic methods can only take into account effects that are approximated by a standard
uncertainty, an expected value and a number of degrees of freedom. Thus, the Bayesian method
may be equally or more accurate for applications, in which the systematic effects can be described
as Fuzzy membership functions. According to Weise and Wöger [4], the outcome of this method
are conforming to the GUM [3]. Moreover, we have shown that the results of this method can be
adapted to match the results produced by the classic methods described in the Sections 3 and 4.

Furthermore, we analyzed the feasibility of software implementation of the Bayesian approach.
We have shown by an abstract UML model that such an implementation is feasible under certain
conditions. The biggest issue for a software solution is the evaluation of the integrals shown in the
Equations 36 and 37 which are presumably multidimensional with a large number of dimensions.
We selected a MC integrator for solving them. Unfortunately this integrator converges slowly
(see Appendix B.2), producing a large computational overhead compared to the other methods,
described in the Sections 3 and 4.

Our future work will consist of the implementation of the patterns described in the Python
programming language [5]. Furthermore, we want to compare different MC integrators for our
software design.

46

Dimension SI Unit Symbol
length meter m
mass kilogramm kg
time second s
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous intensity candela cd

Table 11: The SI base-units

6. Units in Measurements

A unit is a quantity having a well-defined property that can be used as factor to express occurring
quantities of the same property [31]. We refer to the property as physical dimension. Units based
on a fraction of units defined in the same dimension are referred to as dimensionless units.

Assume a quantity Y having a known unit [Y] is measured. It is based on several input quan-
tities X1,X2, . . . ,Xn using a model Y = f (X1,X2, . . . ,Xn). We assume the units [Xi] of each input
parameter Xi to be known. Thus, the automatic evaluation of the unit [Y] based on the units [Xi]
may be used to verify the plausibility of the measurement model. Furthermore, the GUM [3]
requires a statement of the unit of the measurement result.

Therefore, we developed a package modelling unit systems in general and implementing the
International System of Units (SI) [32]. We will show in Section 6.3 that our design can be used in
place of numerical values in Python, thus, allowing to propagate units along with numeric values
or uncertain quantities described in the Sections 3 and 4.

In the next section we provide a brief overview over unit systems by exemplifying the Interna-
tional System of Units (SI). We summarize related work about the implementation of units in soft
and hardware in Section 6.2, and describe our design in Section 6.3.

6.1. The International System of Units (SI)

Unit systems consist of a set of fundamental units that are assigned to physical dimensions called
base-units. Other units can be derived from these units using operators on them, such as a product
of units, multiplication with a constant factor, or adding a constant offset. We show the set of SI
base-units and their physical dimension in Table 11. The physical dimensions of the base-units
are disjoint. The SI base-units can be realized using an approved list of experiments and reference
items (see Taylor [32]). The result of a combination of base-units is referred to as derived or
coherent unit and can be represented by another symbol. We show a selection of derived SI units
in Table 12.

Unfortunately the statement of a unit is ambiguous. Thus, the physical model cannot be inferred
using the unit of a measurement result. Consider the unit surface tension. It can be expressed
by
[N

m

]
or by

[
kg
s2

]
. Just from the plain statement of the unit one cannot infer if it was obtained by

dividing mass by squared time, or by measuring force by length.
This ambiguity is even more challenging for dimensionless units, such as radian [rad] or deci-

bel [dB]. While radian is included as derived unit in the SI describing the dimensionless quantity

47

Dimension Name Symbol Expression in base-units
plane angle radian rad m ·m−1

frequency hertz Hz s−1

force newton N m ·kg · s−2

Table 12: A selection of derived SI-units

plane angle, decibel is used to describe various dimensionless quantities on a logarithmic scale.
This issue led to the proposal by Mills et al. [33] to introduce a system of dimensionless quanti-
ties. They argue that the meaning of any quantity depends on the system of equations defining it.
Therefore, they propose to introduce a dimensionless quantity one [1]. However, Emerson [34] in
contrast to that argues that a unit is just a scale factor and no interpretation of the physical dimen-
sion of the value. He concludes that the term plane angle "[. . .] is generally understood outside a
circle of mathematicians and scientists, and is neither dimensionless nor derived [and therefore]
it is a base quantity". Furthermore, he proposes to introduce distinct units to model decadic and
naperian logarithmic decay "[. . .] having different applications and [being] expressed in pure
numbers in the commonly accepted sense."

Although the argument that units are just scale factors is reasonable from our perspective, we
do not agree with his argumentation establishing the units modelling decadic and naperian loga-
rithmic decay. From our perspective the term "commonly accepted sense" is too blurred. There
are several different interpretations of the unit decibel in various scientific disciplines, such as
electrical engineering (see Krauthäuser [35]).

We interpret physical units as scale factors defined in a physical dimension. We assign a phys-
ical base dimension to each SI base-unit. These dimensions cannot be renamed, thus the physical
dimension is always defined clearly by the canonical form of the product of the base dimen-
sions. In addition, we assume that renaming coherent units allows expressing additional knowl-
edge about a quantity; for example, if one input quantity of a physical model is already measured
in Newton then the result of the model maybe affected by a force. We describe a software design
in Section 6.3 implementing this assumption.

6.2. Implementing Units into Soft– and Hardware

In this section we discuss related work about the implementation of physical units into soft– and
hardware.

The idea of implementing physical units into programming languages has been around for quite
a while. The rationale behind this approach is adding constraints to programming languages in
order to improve their reliability: "The more constraints a language allows to declare, the more
coding errors can be avoided..." (Männer [36]).

Baldwin [37] describes the steps how to modify a Pascal-compiler to check physical units
at compile-time. His implementation is based on the assumption that all physical units can be
represented as a product of powers of the SI-base-units. Therefore, he proposes to store the
powers of the base-units in an array of unsigned chacracters. We refer to this array as unit array.
This approach is also consistent for dimensionless quantities realized by initializing the unit array
to zeroes. Moreover, he proposes to normalize the value of the quantity to the base quantity;
for example, 1 [mA] is represented as 1 · 10−3 [A]. This conversion is done by the preprocessor.

48

The value is stored as type REAL in PASCAL, an implementation of the IEEE-754 floating-point
standard (see Hennesy and Patterson [38]). However, his design is limited to the operators +, −,
=, ≤, 6=, ≥, <, >, ×, and ÷. He proposes to check the unit array for equality for the operations
+, −, =, ≤, 6=, ≥, <, and >. If the two unit arrays are not equal an exception is raised by the
compiler. The multiplication and division of quantities can be realized by adding or subtracting
the elements of the unit array. In conclusion, we think this approach is very limited because of the
following reasons:

• first, it does not allow an representation of coherent units. Imagine, one would try to ex-
press the fuel consumption of a car in liters per 100 [km] using the approach proposed.
The base-units are liter (1[l] = 10−3[m3]), for the amount of fuel consumed, and kilome-
ters (1[km] = 103[m]), to express the distance. Because the powers of the normalized quan-
tities are subtracted in this case, the resulting unit is [m3

m] = [m2]. Although this expression
is correct, the resulting unit [m2] is, from our perspective, misleading. An implementation
of units should also be able to express coherent units.

• second, this approach is limited per definition to a fixed set of operations,
• third, it does not support offset units, such as degrees Celsius ([˚ C] = [K +273.15]).

Another similar proposal implementing units in hardware is described in IEEE 1451.2-
1997 [39]. IEEE 1451.2-1997 is a standard for a smart transducer interface. Smart transducers are
transducers that are described by a machine readable interface, have digital control and data chan-
nels, and provide triggering, control, and status facilities. A block diagram of a smart transducer
interface is shown in Figure 18.

Figure 18: The smart transducer interface module (STIM)

Such transducers have a Smart Transducer Interface Module (STIM) that senses or controls a
physical quantity. It provides addressing, data transport, status, control, and triggering facilities
for one or more channels. Furthermore, the STIM supports calibration and self-test facilities.
The functionality of the transducer is described by a Transducer Electronic Data-Sheet (TEDS).
A TEDS consists of the sections shown in Table 13. The worst-case uncertainty is expressed as
combined standard uncertainty and stored as a floating-point value. A lower and an upper bound

49

Meta TEDS Channel TEDS Calibration related TEDS Extensions
Standard Version Physical units Calibration Industry specific

related data extensions
Unique ID Worst case

uncertainty
Data structure Range
Timing other channel

related data
Channels

Table 13: The sections of a Transducer Electronic Data-Sheet (TEDS)

value describe the range of the quantity controlled or sensed. The physical units are expressed
using a 10 byte vector, shown in Table 14.

Compared to Baldwin’s [37] proposal, this implementation also supports an extended descrip-
tion of dimensionless units; for example, it allows expressing the ratio of amperes by ampere
log10([A]/[A]) on a logarithmic scale. The resulting unit is then described by
(3,128,128,128,128,128,130,128,128,128). Baldwin’s proposal does not support such an ex-
pression. Moreover, the TEDS maintains information about dimensionless quantities. In contrast,
Baldwin’s proposal uses the canonical form of the product of base-units expressing all dimen-
sionless units the same way. However, both approaches do not support any offset units, such as
degrees Celsius ([˚ C] = [K+273.15]).

Another recent proposal integrating units in software is JSR-275 [40] implemented by
JScience [41]. JSR-275 proposes a software design incorporating physical quantities in the Java
programming language [14]. It is a class library that models physical quantities, physical di-
mensions, as well as the physical quantities proposed by the SI [32]. It consists of the pack-
ages quantities, units, and units.converters. The package quantities provides
classes modelling the quantities proposed by the SI [32]. We limit our description of the proposal
to the packages units, and units.converters. The package units defines the unit types,
shown in Figure 19.

AlternateUnit

BaseUnit

CompoundUnit

DerivedUnit

ProductUnit

Unit

TansformedUnit

Figure 19: The unit types of JSR-275

All unit types inherit from the abstract type Unit. It defines the basic set of unit operations. A
unit can be divided and multiplied by other instances of Unit. Furthermore, units can be created
by applying a constant factor, an exponent, or offset to an existing unit; for example, this allows

50

Byte Description
1 Type of unit:

0 – A product of SI base-units, steradians, and radians describe the unit.
The powers these units are stored in fields 2 to 10.

1 – The unit is dimensionless and expressed as U
U , where U is described

by the following fields.

2 – The unit is expressed as log10(U), where the following fields express U.

3 – The unit is expressed as log10(
U
U), where U is expressed by the following fields.

4 – The physical quantity is digital data and thus all fields shall be set to 128.

5 – The physical quantity is expressed by values on an arbitrary scale.
The remaining fields are reserved.

2 2× exponent of radians+128
3 2× exponent of steradians+128
4 2× exponent of meters+128
5 2× exponent of kilograms+128
6 2× exponent of seconds+128
7 2× exponent of amperes+128
8 2× exponent of kelvins+128
9 2× exponent of moles+128
10 2× exponent of candelas+128

Table 14: The TEDS unit definition

51

expressing degree Celsius based on the SI unit Kelvin ([˚ C] = [K+273.15]). Moreover, the class
Unit provides an interface for comparing units using their names, base-units, or their physical
dimensions.

The classes BaseUnit, ProductUnit, and TransformedUnit implement a unit sys-
tem, as described in Section 6.1. The class BaseUnit provides an interface for base-units.
The units can be defined by assigning a unique symbol an instance of BaseUnit. The class
ProductUnit models units that are created by multiplying instances of Unit and storing the
result in the canonical form. The class TransformedUnit describes units that are created from
other units by applying a constant factor, an exponent, or an offset to another unit. These classes
inherit from the abstract class DerivedUnit, providing an interface for retrieving the parent
unit of the current instance.

The class AlternateUnit allows renaming derived units, as proposed in by the SI (de-
scribed in Section 6.1). It assigns a unique symbol to the respective parent unit.

All classes have an interface converting the current instance back to the product of their base-
units, or physical dimensions. Therefore, the units can be compared on three levels:

• checking instances of Unit for identity, being able to differ between two units that are
based on the same base-unit,

• comparing units by the product of their base-units, being able to differ between two units
that are created in the same physical dimension,

• being able to compare units using their physical dimension.
Furthermore, JSR-275 [40] allows converting among units of same physical dimension being

able to compare different unit systems that share the same physical dimensions; for example, the
unit feet can be converted to the unit meters, as shown in Listing 10.

import j a v a x . u n i t s . * ;
2 import j a v a x . u n i t s . c o n v e r t e r s . * ;

4 c l a s s t e s t {
p u b l i c s t a t i c vo id main (S t r i n g a r g s []) {

6

/ * measure a q u a n t i t y i n m e t e r s * /
8 double v a l u e 1 = 1 0 ; Un i t u n i t 1 = SI .METER;

10 / * c r e a t e a c o n v e r t e r from m e t e r s t o f e e t * /
U n i t C o n v e r t e r c o n v e r t e r = u n i t 1 . g e t C o n v e r t e r T o (NonSI . FOOT) ;

12

/ * c o n v e r t t h e v a l u e t o f e e t * /
14 double r e s u l t = c o n v e r t e r . c o n v e r t (v a l u e 1) ;

16 System . o u t . p r i n t l n (" "+ r e s u l t +" f e e t ") ; / / 32 .808398950131235 f e e t
}

18 }

Listing 10: Example: converting among units that are defined in the same dimension
In line 11, the method getConverterTo creates a converter from meter to feet. All unit

types implement this method. It converts the units on the different layers described, falling back
to a lower level if the conversion on the current level is impossible:

• if both units are equal the method returns identity,
• if the units share the same parent units, it tries to convert the current unit back to its parent

52

unit and the parent unit forward to the argument,
• finally, the conversion is done using the physical dimensions if all of the above points fail,
• if no conversion is possible, an exception is raised.

The converters are defined in the package units.converters.
The proposal JSR-275 [40] implements the SI base-unit as well as the derived SI units. It

allows renaming of units to distinguish between quantities of different nature. Furthermore, it
allows converting among units of different unit systems that share the same physical dimensions.
However, dimensionless units on a logarithmic scale cannot be expressed using their proposal, as
IEEE 1451.2 [39] can. From our perspective, JSR-275 is superior compared to the other proposals
we reviewed in this section. Because Baldwin’s proposal [37] does not allow renaming units, nor
does it allow expressing different unit systems. The same drawback applies to IEEE 1451.2. But
in addition to Baldwin’s proposal, IEEE 1451.2 describes dimensionless units explicitly. Inspired
by JSR-275 we describe our implementation of units in the Python programming language [5] in
the next section.

6.3. Software Design

After reviewing several implementations of units in hard- and software, we describe in this section
our software design implemented in Python [5]. Our design is inspired by JSR-275 [40] that
supports compile-time and run-time checks of units of physical quantities in Java [14]. Because
Python is a dynamic-typed interpreted language, compile-time checks are from our perspective
not feasible. Therefore, we limited our design to run-time verification of physical quantities and
units. Furthermore, our design also integrates the approaches we described in the Sections 3 and 4
to propagate the uncertainty in measurements, allowing to assign units to uncertain components
that are propagated through a measurement model.

We divided our design into the packages units, operators, quantities, and si:
• The package units models physical units using the same taxonomy as JSR-275 does (see

Section 6.2).
• The package operators contains a set of operator classes that are necessary to convert

among physical units.
• The package si implements the SI base- and derived units.
• The package quantities provides the type Quantity modelling physical quantities.

The classes modelling physical units are shown in Figure 20.
The class BaseUnit provides an interface modelling base-units of a unit system. A unique

string identifies each base-unit. Products of units are described by the class ProductUnit.
Units that are created by applying an offset or factor to an existing unit are expressed using the
class TransformedUnit. The class CompoundUnit provides an interface for compound
units as described in the last section. Units can be renamed using the class AlternateUnit
that assigns a unique symbol to other instances of Unit.

In order to define coherent units using other units, we implemented Pythons binary nu-
meric operators +, -, *, /, ** and the unary operator ~. Furthermore, we also implemented
the ufuncs root, and sqrt. Their definition is shown in Table 15. We use the stereotype
< number > to express the native Python types int, long, float, as well as our custom
defined type for rational numbers arithmetic.RationalNumber. We do not support trans-
formed units using complex factors or offsets. We use the term parent unit to express the left
operand of binary operations.

53

Unit

BaseUnit DerivedUnit

AlternateUnit CompoundUnit ProductUnit TransformedUnit

<<interface>>
Numeric

<<interface>>
Pickle

Figure 20: The class hierarchy of the unit types

Operator Operand Types Result
+ Unit×< number > Transformed unit that has a positive offset to its

parent unit.
- Unit×< number > Transformed unit that has a negative offset to its

parent unit.
* Unit×< number > Transformed unit factoring its parent unit.
* Unit×Unit Product unit of both arguments.
/ Unit×< number > Transformed unit dividing the parent unit by

the argument.
/ Unit×Unit Product unit representing the fraction of both units.
** Unit×{long|int} Product unit representing the nth-power

of the parent unit.
~ Unit Product unit that has inverted exponents;

for example v m2 = m−2.
sqrt Unit Product unit representing the square root of the argument.
root Unit×{long|int} Product unit representing the nth-root of the parent unit.

Table 15: Description of the effect of Python operations on the type unit

The operations are implemented in Python by overriding the respective broadcast method of
the operand (see Section 2). An example demonstrating these operators is shown in Listing 11.

[htp]

import scuq . u n i t s a s u n i t s
2 import scuq . s i a s s i

4 p r i n t s i .METER # . . . m
a s s e r t (i s i n s t a n c e (s i .METER, u n i t s . BaseUni t))

54

6

SQMETER = s i .METER ** 2 # . . . d e f i n e squ ar e me ter
8 p r i n t SQMETER # . . . m^ (2)

a s s e r t (i s i n s t a n c e (SQMETER, u n i t s . P r o d u c t U n i t))
10

SQMETER2 = s i .METER * s i .METER # . . . a n o t h e r way
12 p r i n t SQMETER2 # . . . m^ (2)

a s s e r t (SQMETER2 == SQMETER) # . . . s t i l l squ ar e me ter
14

CELSIUS = s i . KELVIN + 273 .15 # . . . d e f i n e c e l s i u s on k e l v i n
16 p r i n t CELSIUS # . . . (K+273 .15)

a s s e r t (i s i n s t a n c e (CELSIUS , u n i t s . T r a n s f o r m e d U n i t))

Listing 11: Example: using Pythons operators to define coherent units
Lines 1 and 2 show import statements of the packages units and si. These statements are nec-

essary to physical units. In this example we import the instance si.METER from the module si
modelling [m]. This unit is already defined as base-unit, as shown in lines 4 and 5. Coherent
units can be defined using Pythons operators on the base-unit. Lines 8-9 and 11-13 show dif-
ferent approaches for the definition of the unit square meter using the base-unit meter. Both
approaches return equal representations of the unit square meter by creating instances of the
class ProductUnit. Furthermore, we show in lines 15-17 how transformed units can be cre-
ated. The unit degrees Celsius can be defined by adding an offset of +273.15 to the unit Kelvin.

We also designed the unit comparisons similar to JSR-275 [40]. Units are compared using the
following expressions. The expressions unit1 and unit2 refer to instances of Unit.

1. unit1 is unit2
2. unit1 == unit2
3. unit1.is_compatible(unit2)

These three expressions show the possible layers, on which units are compared. The first
expression compares the two units by their object identifiers and returns True if they are
identical. The second expression compares the units by their definition. The comparison re-
turns True if both units are either identical or they have equal representations such that instances
of AlternateUnit are not equal to instances of ProductUnit which share the same physi-
cal dimensions.

Suppose a measurement model takes the paint coverage measured in
[

m2

l

]
and the inverse

length measured in
[1

m

]
as inputs. Both units are reduced to the same dimension of inverse length.

However, the semantics in representation are different [42]. In order not to confuse these two units,
we renamed

[
m2

l

]
to [pc] using the class AlternateUnit as shown in Listing 12. Although

they are still compatible as shown in line 15, they are not equal shown in line 14. In general, we
propose to rename special purpose units using the class AlternateUnit allowing to preserve
the semantics of the representation. Furthermore, this concept may be used to model different
dimensionless units.

1 import scuq . u n i t s a s u n i t s
import scuq . s i a s s i

3

D e f i n e t h e u n i t l i t r e
5 l i t r e = (s i .METER ** 3)

l i t r e = l i t r e / 1 0 0 0 . 0
7

55

D e f i n e t h e u n i t m^2 / l used f o r p a i n t c o v e r a g e
9 u _ p a i n t _ c o v e r a g e = u n i t s . A l t e r n a t e U n i t (" pc " , s i .METER ** 2 / l i t r e)

11 # D e f i n e t h e u n i t m^{−1}
u _ i n v _ m e t e r = ~ s i .METER

13

p r i n t (u _ p a i n t _ c o v e r a g e == u _ i n v _ m e t e r) # F a l s e
15 p r i n t (u _ p a i n t _ c o v e r a g e . i s _ c o m p a t i b l e (u _ i n v _ m e t e r)) # True

Listing 12: Example: the difference of dimensional compatibility and equality
The expression shown in Point 3 compares units using their physical dimensions. We al-

ready demonstrated this feature in Listing 12. In line 15, the dimension of a unit is obtained
using the method Unit.get_dimension() based on a physical model. We hardwired the
physical model of the SI units into the class si.SIModel. This class is derived from the
abstract class units.PhysicalModel. A custom physical model implementation has to
override the method PhysicalModel.get_dimension(unit) that returns the physical
dimension for each base-unit of the unit system. The module Units contains a global vari-
able default_model that is interfaced by the method unit.get_dimension. The default
physical model can be set and accessed using the procedures units.set_default_model
and units.get_default_model respectively. Importing the module si, shown in line 2,
automatically sets the default physical model to an instance of si.SIModel. The implementa-
tion of the class SIModel is shown in Listing 13.

1 . . .

3 c l a s s SIModel (u n i t s . P h y s i c a l M o d e l) :

5 def g e t _ d i m e n s i o n (s e l f , u n i t) :

7 i f (u n i t == METER) :
re turn u n i t s .LENGTH

9 i f (u n i t == KILOGRAM) :
re turn u n i t s .MASS

11 i f (u n i t == SECOND) :
re turn u n i t s . TIME

13 i f (u n i t == AMPERE) :
re turn u n i t s .CURRENT

15 i f (u n i t == MOLE) :
re turn u n i t s . SUBSTANCE

17 i f (u n i t == CANDELA) :
re turn u n i t s . LUMINOUS_INTENSITY

19 i f (u n i t == KELVIN) :
re turn u n i t s .TEMPERATURE

21 # T h i s s h o u l d n o t happen , s i n c e we assume t h a t o n l y S I
u n i t s are used .

23 r a i s e q e x c e p t i o n s . UnknownUni tExcept ion (" The u n i t i s no SI−
u n i t " ,

u n i t)
25 . . .

Listing 13: The implementation of the class SIModel

56

Lines 7-20 show the method PhysicalModel.get_dimension(unit) returning a pre-
defined dimension for each SI base-unit. We defined the set of base dimensions proposed by the
SI [32] in the module units. All other physical dimensions are formed of products these base
dimensions. The method Unit.get_dimension evaluates the dimension of any unit based
on its type and the physical model. This method is not overridden by any subclass of Unit. That
said the given unit types provided by the module units are the final set of all unit types.

In addition to the features described above, we also implemented unit conversions. Our de-
sign allows comparing of units that share the same physical dimension and physical model. The
conversion is implemented in the method Unit.get_operator_to(unit) that returns an
operator converting values of the given argument to current unit. The method obtains an operator
of the current instance back to the product of its base-units and also obtains the same operator for
the argument and inverts it. These two operators are then chained to obtain the resulting operator.
We illustrate these features in Listing 14 by converting degrees Celsius to Fahrenheit.

1 import scuq . u n i t s a s u n i t s
import scuq . s i a s s i

3

D e f i n i n g F a h r e n h e i t
5 f a h r e n h e i t = s i . CELSIUS * 9 . 0 / 5 . 0 + 32

7 # F a h r e n h e i t t o C e l s i u s
f a r _ c e l = s i . CELSIUS . g e t _ o p e r a t o r _ t o (f a h r e n h e i t)

9 p r i n t f a r _ c e l . c o n v e r t (2 3 8) # ~100 °C

11 # C e l s i u s t o F a h r e n h e i t
c e l _ f a r = f a h r e n h e i t . g e t _ o p e r a t o r _ t o (s i . CELSIUS)

13 p r i n t c e l _ f a r . c o n v e r t (1 0 0) # ~238 °F

15 # The O p e r a t o r s can a l s o be i n v e r t e d u s i n g "~"
p r i n t (~ f a r _ c e l) . c o n v e r t (1 0 0) # ~238 °F

17 p r i n t (~ c e l _ f a r) . c o n v e r t (2 3 8) # ~100 °C

19 # . . . and c h a i n e d u s i n g *
p r i n t (c e l _ f a r * f a r _ c e l) . c o n v e r t (2 3 8) # 238 °F

Listing 14: Example: converting degrees Fahrenheit to degrees Celsius
The definition of degrees Fahrenheit in line 5 creates an instance of TransformedUnit.

This instance internally maintains an instance of operators.CompoundOperator that im-
plements the operations dictated by the definition of the unit. The operator that converts values
from Fahrenheit to Celsius is created in line 8. It is a combination of the operators shown in
Figure 21. The solid arrow shows the order of the definition of the units degrees Fahrenheit and
degrees Celsius and the dotted line shows the traversal of the operators to convert from Fahrenheit
to Celsius. Note that the operators on the side of Fahrenheit are inverted for this conversion.

In this example the unit Fahrenheit is based on the unit Celsius that is based on the system unit
Kelvin. Therefore, the operator created converts Fahrenheit back to Kelvin and Kelvin forward
to Celsius. This is the general approach to convert among units of the same dimension. We
demonstrated the inversion and chaining of operators in lines 16-20. The Python operator ~
invokes the unit operators method __invert__ that creates a new instance of an operator that
performs the opposite operation. The Python operator * is used to chain different unit operator
instances. The complete set of unit operators is shown in Figure 22.

57

Figure 21: Chaining conversion operators

UnitOperator

LogOperatorAddOperator MultiplyOperator __ExpOperator__ CompoundOperator __Identity__

Figure 22: The hierarchy of unit operators

58

• The class AddOperator adds a constant offset to a variable.
• The operator MultiplyOperator multiplies variables with a constant offset.
• The class LogOperator returns the logarithm of a variable.
• __ExpOperator__ is a private class that is returned if a LogOperator is inverted.
• The operator CompoundOperator implements chains of the operators described.
• The private class __Identity__ implements identity such that the assigned variable is

returned as is. A global instance of this operator is units.IDENTITY.
After having described how our class library defines, compares, and converts physical units, we

describe our implementation of physical quantities. In contrast to the JSR-275 [40] proposal that
defines various different types of physical quantities being checked at compile-time, we imple-
mented a single type Quantity that can only be used at run-time. The reason for this obvious
drawback is Python being an interpreted language that performs just in time compilations.

We define a physical quantity being a tuple of a value and a default physical unit. The
term value refers in our definition to numeric values, vectors of numeric values, and uncer-
tain components as described in the Sections 3 and 4. We use a default unit, since the value
can be represented in various other units of the same dimension. Based on this definition,
we propose the design shown in Figure 23. Furthermore, the type Quantity also imple-
ments the methods get_value(unit), returning the stored value in the given unit, and the
method get_default_unit that returns the default unit of the quantity. Moreover, we imple-
mented all numeric operations and NumPy ufuncs described in the Section 2.

Quantity

<<interface>>
python::Numeric

<<interface>>
python::Pickle

<<interface>>
python::Comparable

<<interface>>
Ufuncs

Unit

Figure 23: The unit consistency check implemented by the class Quantity

Since, the type Quantity implements the Python methods to emulate numeric behavior and
the ufuncs of NumPy, it can be easily integrated into existing software that uses native Python
types as well as functions of NumPy. The arguments of the binary operations are converted
to Quantity if possible.

However before any operation is performed on the value, the units of the arguments are com-
pared to ensure consistency. The rules are shown in Figure 24.

The term comparable used in Figure 24 denotes the type of the unit comparison. We provide
two levels of consistency checking: weak consistency checking and strict consistency checking.

59

Figure 24: The comparsion of units

60

Strict consistency checking compares the default units using the operator ==. Thus, the units
must mach in type and dimension.

Weak consistency checking compares the units using the method Unit.is_compatible.
In this case the units are compared using their physical dimensions only. Strict consistency
checking is enabled using the procedure quantities.set_strict(True) and disabled us-
ing quantities.set_strict(False) respectively. Checking dimensionless units is also
carried out the same way. If strict checking is enabled the unit is checked against units.ONE
using ==. Otherwise it is only checked for compatibility using Unit.is_compatible.

If the units match the rules the operation is performed on the values of the operands of the
binary operation. The result is returned as a new instance of Quantity that has the default unit
of the right hand side operand for binary operations and Units.ONE for operations returning
a dimensionless quantity. If the unit consistency check fails, an exception is raised. There is
however a limitation: If the operands of a binary operation are uncertain quantities the units must
be identical. From our perspective, no save conversion is possible because the units describing
the uncertainty may have different zero-points.

We provide a complete interface description of the classes described in this Section in Ap-
pendix C.

6.4. Discussion

In this section we evaluated the concept of unit systems using the example of SI units. We com-
pared a selection of unit implementations in soft- and hardware, and we presented our own soft-
ware implementation. From our perspective, unit implementations should provide at least the
capabilities to compare units using their physical dimensions. This is also referred to as dimen-
sional analysis. Our implementation allows assigning physical units to numeric types in Python.
Furthermore it performs automatic consistency checks for Pythons numeric operators as well as
a selection of NumPys ufuncs at run-time. Furthermore, we added a layer on top of the dimen-
sional analysis allowing to compare units using their names as proposed by JSR-275 [40]; for
example,

[
m2

l

]
is not confused with

[1
m

]
, if desired. This feature allows assigning a semantic to

different units of the same dimension by renaming them. Since our type Quantity can store
all instances of classes that implement Pythons numeric behavior, we can also store instances of
uncertain number types as described in the Sections 3 and 4. In the next section we provide an
example how to evaluate the uncertainty of physical quantities using our class library.

61

62

Input Name Distribution Value and Unit Uncertainty DOF
Quantity of Instance of Quantity of Quantity

ls l_s Normal 5 ·107 nm 25 nm 18
d1 d_1 Normal 0 nm 5.8 nm 24
d2 d_2 Normal 0 nm 3.9 nm 5
d3 d_3 Normal 0 nm 6.0 nm 8
αs alpha_s Uniform 11.5 ·10−6 ˚ C−1 ±2 ·10−6 ˚ C−1

∞

θ1 theta_1 Normal 0 ˚ C 0.2 ˚ C ∞

θ2 theta_2 Arcsine 0 ˚ C ±0.5 ˚ C ∞

δα delta_alpha Uniform 0 ˚ C−1 ±1 ·10−6 ˚ C−1 50
δθ delta_theta Uniform 0 ˚ C ±0.05 ˚ C 2

Table 16: Input quantities used in the end-gauge example, adapted from Hall [7]

7. Examples

After describing different concepts and software designs to propagate the uncertainty in measure-
ments and unit implementations in software, we evaluate a selection of examples in this section.
We show how the concepts described the Sections 3, 4 and 6 can be unified to evaluate the un-
certainty as well as the units in measurements. The examples we present here are taken from the
GUM [1], Appendix H and have already been evaluated by Hall [7]. In Section 7.1 we present the
end gauge calibration problem to demonstrate the approach described in Section 3. In Section 7.2,
the impedance measurement described in the GUM [1] Appendix H.2, is described. We evaluate
it as scalar problem using the approach described in Section 3 and model it as complex-valued
problem using the approach described in Section 4.

7.1. End Gauge Calibration Problem

The end gauge calibration problem describes the calibration of a gauge block compared to a
standard gauge block. The goal is to determine the uncertainty for the measurement of the length
l of the gauge block. The length is evaluated using Equation 40. [7]

l = ls +d− ls (δα +αs +δθ) (40)

The input parameters of the model are the following:
• the length ls is the length of the standard gauge block,
• αs is the thermal expansion coefficient of the standard gauge block,
• δα is the difference of the two expansion coefficients of the gauge blocks,
• θ is the temperature offset to 20 ˚ C of the gauge block being calibrated,
• δθ is the temperature difference of the two gauge blocks,
• d is the difference of the lengths of the two gauge blocks being the sum of three contribu-

tions d1, d2, and d3.
Table 16 shows the properties of the input quantities and the instances names of the implemen-

tation assigned to each quantity.
Our Python code evaluating the problem is shown in Listing 15. We define the units we use

in lines 4-7 and create an instance of Context that will later be used to evaluate the uncer-

63

tainty. Then we declare the input parameters, each one in two steps. At first the input quantity
is described in terms of distribution and distribution parameters then it is encapsulated in an in-
stance of Quantity assigning a unit to it. Consider the definition of the lengths in lines 14-
19. At first we define each length as instance of UncertainInput using the factory method
UncertainInput.gaussian and store it in the variable tmp. Then this variable is encapsu-
lated in an instance of Quantity. We define the other quantities shown in Table 16 accordingly.

from scuq import *
2

D e f i n e t h e u n i t s as t r a n s f o r m e d u n i t s
4 NANOMETER = s i .METER/ 1 e9

CELSIUS = s i . KELVIN+273.15
6 p r i n t "nm := " ,NANOMETER

p r i n t "C := " , CELSIUS
8

c = ucomponents . C o n t e x t ()
10

tmp = ucomponents . Uncer ta inComponent . g a u s s i a n (5 e7 , 25 , 18)
12 l _ s = q u a n t i t i e s . Q u a n t i t y (NANOMETER, tmp)

14 tmp = ucomponents . Uncer ta inComponent . g a u s s i a n (0 . 0 , 5 . 8 , 24)
d_1 = q u a n t i t i e s . Q u a n t i t y (NANOMETER, tmp)

16 tmp = ucomponents . Uncer ta inComponent . g a u s s i a n (0 . 0 , 3 . 9 , 5)
d_2 = q u a n t i t i e s . Q u a n t i t y (NANOMETER, tmp)

18 tmp = ucomponents . Uncer ta inComponent . g a u s s i a n (0 . 0 , 6 . 7 , 8)
d_3 = q u a n t i t i e s . Q u a n t i t y (NANOMETER, tmp)

20

d = d_1 + d_2 + d_3
22

V e r i f y t h e model
24 a s s e r t (d . g e t _ d e f a u l t _ u n i t () == NANOMETER)

26 tmp = ucomponents . Uncer ta inComponent . un i fo rm (1 1 . 5 e−6, 2e−6)
a l p h a _ s = q u a n t i t i e s . Q u a n t i t y (~CELSIUS , tmp)

28 tmp = ucomponents . Uncer ta inComponent . un i fo rm (0 . 0 , 1e−6, 50)
d e l t a _ a l p h a = q u a n t i t i e s . Q u a n t i t y (~CELSIUS , tmp)

30

tmp = ucomponents . Uncer ta inComponent . g a u s s i a n (−0.1 , 0 . 2)
32 t h e t a _ 1 = q u a n t i t i e s . Q u a n t i t y (CELSIUS , tmp)

tmp = ucomponents . Uncer ta inComponent . a r c s i n e (0 . 0)
34 t h e t a _ 2 = q u a n t i t i e s . Q u a n t i t y (CELSIUS , tmp)

t h e t a = t h e t a _ 1 + t h e t a _ 2
36

V e r i f y t h e model
38 a s s e r t (t h e t a . g e t _ d e f a u l t _ u n i t () == CELSIUS)

40 tmp = ucomponents . Uncer ta inComponent . un i fo rm (0 . 0 , 0 . 0 5 , 2)
d e l t a _ t h e t a = q u a n t i t i e s . Q u a n t i t y (CELSIUS , tmp)

42

tmp_1 = − l _ s * d e l t a _ a l p h a * t h e t a
44 tmp_2 = l _ s * a l p h a _ s * d e l t a _ t h e t a

46 l = l _ s + d + tmp_1 + tmp_2

64

48 # V e r i f y t h e model
a s s e r t (l . g e t _ d e f a u l t _ u n i t () == NANOMETER)

50

p r i n t " u (a l p h a _ s) \ t \ t \ t = " , c . u n c e r t a i n t y (a l p h a _ s)
52 p r i n t " u (d e l t a _ a l p h a) \ t \ t \ t = " , c . u n c e r t a i n t y (d e l t a _ a l p h a)

p r i n t " u (t h e t a) \ t \ t \ t = " , c . u n c e r t a i n t y (t h e t a)
54 p r i n t " u(− l _ s * d e l t a _ a l p h a * t h e t a) \ t = " , c . u n c e r t a i n t y (tmp_1)

p r i n t " u (l _ s * a l p h a _ s * d e l t a _ t h e t a) \ t = " , c . u n c e r t a i n t y (tmp_2)
56 q u a n t i t i e s . s e t _ s t r i c t (F a l s e) # Enable c o n v e r s i o n o f u n i t s

p r i n t " u (l) \ t \ t \ t \ t = " , c . u n c e r t a i n t y (l) . g e t _ v a l u e (s i .METER) , s i .METER
58 p r i n t " dof (l) \ t \ t \ t \ t = " , c . dof (l)

Listing 15: Example: Python code evaluating the end-gauge problem

After the input quantities have been defined we construct the model in lines 44-46. This step is
broken down to intermediate steps to reduce the complexity of the expression. At first we evaluate
−ls ·δα ·θ and store it in tmp_1. Then we construct ls ·αs ·δθ and store it in tmp_2. Finally, we
evaluate l by adding ls +d to tmp_1 and tmp_2. In lines 24, 38, and 49 we verify the correctness
of the model using the respective units.

We evaluate the combined standard uncertainty, the uncertainties of the parameters, and the
effective degrees of freedom in lines 51-58. We obtain the same values as Hall [7] does using
his implementation. However, these values differ from the results presented in the GUM [1].
According to Hall, the differences are due to a larger numerical round-off of the results presented
in GUM. The output using our implementation is shown in Listing 16. Lines 1 and 2 show the
representation of the units [nm] and [˚ C]. The results presented in lines 3-7 show that the units
are maintained correctly. We converted the combined standard uncertainty of the length l from
[nm] to [m]. The code for the conversion is shown in lines 56 and 57 of Listing 15. Since strict
consistency checking is enabled by default, we need to disable it to convert from [nm] to [m].
Despite both units being realized in the same physical dimension length, [m] is implemented
using the class BaseUnit and [nm] is created as an instance of TransformedUnit. Because
both units are not of the same type, the consistency check would have failed if strict checking
were enabled (see Section 6.3).

nm := (m*1e−09)
2 C := (K+ 2 7 3 . 1 5)

u (a l p h a _ s) = 1 .15470053838 e−06 (K+ 2 7 3 . 1 5) ^(−1)
4 u (d e l t a _ a l p h a) = 5 .7735026919 e−07 (K+ 2 7 3 . 1 5) ^(−1)

u (t h e t a) = 0 .406201920232 (K+ 2 7 3 . 1 5)
6 u(− l _ s * d e l t a _ a l p h a * t h e t a) = 2 .88675134595 (m*1e−09)

u (l _ s * a l p h a _ s * d e l t a _ t h e t a) = 16.5988202392 (m*1e−09)
8 u (l) = 3 .16637674111 e−08 m

dof (l) = 16 .7521475092

Listing 16: Console output of listing 15

This example demonstrated the general procedure to evaluate the uncertainty of uncorrelated
scalar quantities. We also demonstrated the use of units in combination with uncertain quantities.
In the next section we evaluate another problem showing how a complex-valued problem usually
evaluated in scalar terms can be evaluated using the method described in Section 4.

65

Input Name of Value Uncertainty
Quantity instance and Unit

V v 4.9990 V 0.0032 V
I i 19.661 mA 0.0095 mA
Φ phi 1.04446 rad 0.00075 rad

Table 17: Impedance measurement example: estimated input parameters, adapted from Hall [7]

Coefficient Value
r(V, I) −0.36
r(V,Φ) +0.86
r(I,Φ) −0.65

Table 18: Impedance measurement example: correlation coefficients of input parameters, adapted
from Hall [7]

7.2. Impedance Measurement

Another application area for uncertainty evaluations is impedance measurements in electrical net-
works. The goal is to evaluate the impedance Z, its real R (a.k.a. Resistance) and imaginary part
X (a.k.a. Reactance) based on measurements of the potential difference V , alternating current
flowing through a network element I, and their phase Φ. These output parameters are evaluated
using the Equations 41.

R =
V
I

cos(Φ)

X =
V
I

sin(Φ)

Z =
V
I

(41)

The estimates of the input parameters are usually taken from the same sample and therefore
are correlated. The estimates of the input quantities are shown in Table 17, their correlation
coefficients are shown in Table 18.

We evaluate Z, R, and X the almost same way as we did in the last Section. The correlation
coefficients are maintained by the instance of Context. In order to set the correlation of two
input quantities q1 and q2 , we use the method set_correlation(q1,q2). We show
the implementation in Listing 17. Lines 1 and 2 show the import statements. In addition to
importing the package scuq, we import NumPy [6]. Importing NumPy is necessary to obtain
the functions sin and cos. Furthermore, we define the input parameters in lines 6-11 and the
model in lines 14-16. In order to verify the consistency of the model, we ensure the units of the
output parameters have the same physical dimension as the SI unit Ohm [Ω]. Finally, we report
the uncertainty of the output parameters in lines 28-31.

1 from scuq import *
from numpy import *

66

3

c = ucomponents . C o n t e x t ()
5

tmp = ucomponents . U n c e r t a i n I n p u t . g a u s s i a n (4 . 9 9 9 0 , 0 . 0 0 3 2)
7 v = q u a n t i t i e s . Q u a n t i t y (s i . VOLT, tmp)

tmp = ucomponents . U n c e r t a i n I n p u t . g a u s s i a n (1 9 . 6 6 1 e−3, 0 .0095 e−3)
9 i = q u a n t i t i e s . Q u a n t i t y (s i .AMPERE, tmp)

tmp = ucomponents . U n c e r t a i n I n p u t . g a u s s i a n (1 . 0 4 4 4 6 , 0 . 0 0 0 7 5)
11 p h i = q u a n t i t i e s . Q u a n t i t y (s i . RADIAN, tmp)

13 # D e f i n e t h e model
R = v / i * cos (p h i)

15 X = v / i * s i n (p h i)
Z = v / i

17

V e r i f y model
19 a s s e r t (R . g e t _ d e f a u l t _ u n i t () . i s _ c o m p a t i b l e (s i .OHM))

a s s e r t (X. g e t _ d e f a u l t _ u n i t () . i s _ c o m p a t i b l e (s i .OHM))
21 a s s e r t (Z . g e t _ d e f a u l t _ u n i t () . i s _ c o m p a t i b l e (s i .OHM))

23 # C o r r e l a t e i n p u t q u a n t i t i e s
c . s e t _ c o r r e l a t i o n (v , i , −0 .36)

25 c . s e t _ c o r r e l a t i o n (v , phi , + 0 . 8 6)
c . s e t _ c o r r e l a t i o n (i , phi , −0.65)

27

R ep or t t h e u n c e r t a i n t y
29 p r i n t " u (R) = " , c . u n c e r t a i n t y (R)

p r i n t " u (X) = " , c . u n c e r t a i n t y (X)
31 p r i n t " u (Z) = " , c . u n c e r t a i n t y (Z)

Listing 17: Python code evaluating the impedance measurement example
We obtained the same results from the uncertainty evaluation as Hall [7] did. However, these

results also differ from the results presented by the GUM [1] due to a larger round-off in the
results presented in the GUM.

Z = V · exp(j ·Φ) (42)

Hall [7] presents another representation for impedance measurements, shown in Equation 42.
The impedance, reactance, and resistance are available through the absolute value, the imaginary
part, and the real part of Z, respectively. Hall’s representation is obviously more compact than
the model shown in the Equations 41. We evaluate it using the approach described in Section 4.
Our implementation is shown in Listing 18. The complex constant j is defined in line 7. The
parameters are defined in lines 9-13. The method gaussian of the class Context takes the
estimated value and uncertainty of the real and the imaginary part. Since complex functions are
bivariate functions the correlation of the two arguments must be expressed as matrix of corre-
lation coefficients (see Section 4). We use NumPys type matrix to express matrices in our
implementation.

1 from scuq import *
from numpy import *

3

67

c = cucomponents . C o n t e x t ()
5

D e f i n e complex j
7 _J_ = q u a n t i t i e s . Q u a n t i t y (u n i t s .ONE, c . g a u s s i a n (0+1 j , 0 , 0))

9 tmp = c . g a u s s i a n (4 . 9 9 9 0 , 0 . 0 0 3 2 0 9 , 0 . 0)
v = q u a n t i t i e s . Q u a n t i t y (s i . VOLT, tmp)

11 tmp = c . g a u s s i a n (1 9 . 6 6 1 e−3, 0 .00947 e−3, 0 . 0)
i = q u a n t i t i e s . Q u a n t i t y (s i .AMPERE, tmp)

13 tmp = c . g a u s s i a n (1 . 0 4 4 4 6 , 0 .0007521 , 0 . 0)
p h i = q u a n t i t i e s . Q u a n t i t y (s i . RADIAN, tmp)

15

D e f i n e t h e model
17 Z = v / i * exp (_J_ * p h i)

19 # V e r i f y model
a s s e r t (Z . g e t _ d e f a u l t _ u n i t () . i s _ c o m p a t i b l e (s i .OHM))

21

C o r r e l a t e i n p u t q u a n t i t i e s
23 c . s e t _ c o r r e l a t i o n (v , i , m a t r i x ([[−0 . 3 6 , 0] , [0 , 0]]))

c . s e t _ c o r r e l a t i o n (v , phi , m a t r i x ([[+ 0 . 8 6 , 0] , [0 , 0]]))
25 c . s e t _ c o r r e l a t i o n (i , phi , m a t r i x ([[−0.65 , 0] , [0 , 0]]))

27 # R ep or t t h e u n c e r t a i n t y
u_c = c . u n c e r t a i n t y (Z)

29 p r i n t " u (Z) = \ n " , c . u n c e r t a i n t y (Z)

31 a s s e r t (u_c . g e t _ d e f a u l t _ u n i t () . i s _ c o m p a t i b l e (s i .OHM**2))

33 # e v a l u a t e u (R) and u (X) e x p l i c i t l y

35 u n i t = u_c . g e t _ d e f a u l t _ u n i t ()
v a l = u_c . g e t _ v a l u e (u n i t)

37 u_r = q u a n t i t i e s . Q u a n t i t y (s q r t (u n i t) , s q r t (v a l [0 , 0]))
u_x = q u a n t i t i e s . Q u a n t i t y (s q r t (u n i t) , s q r t (v a l [1 , 1]))

39

p r i n t " u (R) = " , u_r
41 p r i n t " u (I) = " , u_x

Listing 18: Python code evaluating the impedance measurement example

The results of the complex evaluation of the problem are the complex value of Z with unit[V
A

]
, and the combined standard uncertainty with unit

[
V 2

A2

]
. The combined standard uncertainties

presented in the previous evaluations can be inferred from the covariance matrix as shown in
Equations 43. We implemented this conversion in lines 35-38.

u(Z) =
[

u(ℜ)2 r(ℜ,ℑ) ·u(ℜ)2 ·u(ℑ)2

r(ℑ,ℜ) ·u(ℜ)2 ·u(ℑ)2 u(ℑ)2

]
u(ℜ) =

√
u(Z)11

u(ℑ) =
√

u(Z)22 (43)

68

8. Conclusion

We describe the following in our investigation into approaches propagating the uncertainty in
measurements:

• The evaluation of uncertainty of scalar-valued models based on the GUM [3], Hall [19],
[20], and Hall and Willink [23].

• The propagation of uncertainty for complex-valued models based on Hall [18], and Willink
and Hall [25].

• The propagation of uncertainty using Bayesian Inference based on Weise and Wöger [4]
and Hüllermeier [28].

• A software design for object-oriented programming languages propagating the uncertainties
modelling the methods enumerated above.

• Selected approaches to integrate units in programming languages and embedded hardware.
• The integration of physical quantities into general-purpose object-oriented programming

languages similar to JSR-275 [40] exemplifying the Python programming language.
After having discussed the methods of uncertainty propagation in detail in Sections 3–5, we

provide a brief comparison of the approaches for uncertainty propagation in Table 19 that might
be used to assist in the choice of a method for uncertainty propagation. We compare the described
approaches using the following criteria:

• GUM conformity: Is the approach proposed conforming to the standards of the GUM [1]?
• correlation of input quantities: Does the respective approach evaluate the uncertainty of

correlated quantities?
• systematic errors: Is the uncertainty propagation method able to express systematic errors

accurately such as a limited measuring range?
• non-linear models: Can the method express non-linear measurement models accurately or

does it apply a linear approximation to the model in the region of the estimated value?
• multi-variate problems: Can the method propagate the uncertainty of multivariate problems

(i.e. multiple output parameters)?
• recursion: Can the method be applied recursively such that the outcomes can be directly

used as input parameters of another evaluation using the respective method?
• our software design:

– true value: Does it estimate the true value?
– uncertainty: Does it estimate the combined standard uncertainty?
– confidence interval: Does it estimate confidence intervals?
– DOF: Does it estimate the effective degrees of freedom?
– overhead: How high is computation overhead compared to the other methods?

We use the symbols
√

for fully supported, ♦ for partial supported, ∅ for not supported, and �
for not applicable.

The reported research provides a foundation for implementing uncertainty propagation methods
in software while using physical units. We hope that the readers enjoy the benefits of a software
design of uncertainty propagation methods that implements physical units.

69

Property Scalar-Valued Method Complex-Valued Method Bayesian Method
described in described in described in

Section 3 Section 4 Section 5
Features of our The Method

GUM Conformity
√ √ √

Correlation of
√ √ √

Input Quantities
Systematic ♦ ♦

√

Errors
Non-linear ∅ ∅

√

Models
Multivariate ∅ ♦

√

Problems
Recursion ♦ ♦

√

Features of our Software Design
True Value

√ √ √

Uncertainty
√ √ √

Confidence ∅ ∅ ∅
Interval
DOF

√ √
�

Overhead low low high
Correlation of

√ √ √

Input Quantities
Systematic ∅ ∅ ♦
Errors
Non-linear ∅ ∅ ∅
Models
Multivariate ∅ ♦ ∅
Problems
Recursion ♦ ♦ ♦

Table 19: A brief comparision of the methods propagating the uncertainty in measurements

70

Glossary

analytic An analytic complex valued function is a function that ful-
fils the Cauchy-Riemann equations, 89

bivariate function A bivariate function f consists of a pair of scalar functions
f1 and f2., 25

byte compilation Python has a compiler that transforms source code into
byte code that is evaluated by the byte-code interpreter.
The byte-code is platform independent and it is executed
almost as fast as native code., 4

C++ C++ is an object-oriented language available for various
platforms., 4, 27

complex differentiable A complex function is complex differentiable if it meets
the Cauchy-Riemann equations., 25, 88

DOF Abbreviation for degrees of freedom., 16, 17
dynamic-typed In a dynamic typed programming language the types of all

objects are defined at run-time only., 4, 53

GUM Abbreviation for Guide to the Propagation of Uncertainty
in Measurements., iii, 15

GUM–tree A software design pattern that models the Gaussian error
propagation law., 17

holomorphic A synonyme for analytic, 89

Java Java is an object-oriented language available for various
platforms. More information is available at: http://
http://java.sun.com/, 4, 50, 53

MC The abbreviation for Monte-Carlo, a method of numerical
integration., 42, 44–46, 83, 84

NumPy NumPy is a third-party module for scientific computing in
the Python programming language., iii, 3, 4, 10, 12–14,
20, 31, 59, 61, 66, 67

Pascal A programing language developed for educational pur-
poses., 48

PDF The abbreviation for probability density function., 81–83

71

http://http://java.sun.com/
http://http://java.sun.com/

Python Python is an object-oriented interpreted scripting lan-
guage. More information is available at: http://
http://www.python.org/, iii, 3–5, 8–10, 12–14,
20, 30–32, 35, 46, 47, 53–55, 57, 59, 61, 63, 69

SCUQ The abbreviation for “class library for the automatic evalu-
ation of Scalar or Complex-valued Uncertain Quantities.”,
vii, 2, 3, 13, 20

SI The abbreviation for the International System of Units., 47
STIM An abbreviation for Smart Transducer Interface Module.,

49

TEDS An abbreviation for Transducer Electronic Data-Sheet., 49

ufuncs Universal Broadcasting Functions., 10, 12, 14, 20, 31, 53,
59, 61

W-S The abbreviation for Welch-Satterthwaite formula approx-
imating the effective degrees of freedom., 16, 37

72

http://http://www.python.org/
http://http://www.python.org/

Index of Notation

cos−1 The inverse cosine function, 93
cosh−1 The inverse hyperbolic cosine function, 95
sin−1 The inverse sine function, 93
sinh−1 The inverse hyperbolic sine function, 95
tan−1 The inverse tangent function, 94
tanh−1 The inverse hyperbolic tangent function, 96
tan−1

2 The inverse two-argument tangent function, 97

B(p,q) The beta function, 82

z̄ The complex conjugate of z, 90
cos The cosine function, 92, 93
cosh The hyperbolic cosine function, 94, 95
Cov(X) This function returns the covariance matrix of the vector

of random variables X, 83

det This function returns the determinant of a matrix, 83

E(X) This function returns the expected value of the random
variable X , 81–83

exp The exponential function ex, 67, 82, 83, 91

fx This function denotes a probability density func-
tion (PDF), 81–83

ℑ This function returns the imaginary part of a complex
value or function, 90–98

J This operator returns the Jacobian matrix of a complex-
valued function, 89

Jz This operator returns the complex Jacobian matrix of a
complex-valued function, 89

ln The logarithmus naturalis (i.e. base e), 92, 97

M This function transforms a vector of complex a complex
value into a (2× 2)-matrix. If the argument is a complex
Jacobian matrix, it is transformed into a scalar Jacobian
matrix., 88, 89

Φ The cummulative distribution function of the standard nor-
mal distribution, 84

73

Pr This function returns a probability; for example, Pr(A) re-
turns the probability of the event A., 84

r This function returns the correlation coefficient of two ran-
dom variables; for example, r(X ,Y) retuns the correlation
coefficient of X and Y ., 85–87

ℜ This function returns the real part of a complex value or
function, 90–98

sin The sine function, 92
sinh The hyperbolic sine function, 94

tan The tangent function, 93
tanh The hyperbolic tangent function, 95

u(X) This function returns the standard uncertainty of a random
variable X , 81–83

V(X) This function returns the variance the random variable X ,
81–83

74

References

[1] ISO, “Iso guide 98:1995: Guide to the expression of uncertainty in measurement (gum),”
1995.

[2] DIN, “Din v env 13005: Leitfaden zur angabe der unsicherheit beim messen (in german),”
1999.

[3] B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of
nist measurement results,” NIST Tecnical Note 1297, Tech. Rep., 1994.

[4] K. Weise and W. Wöger, Meßunsicherheit und Meßdatenauswertung (in German). Wein-
heim; New York; Chichester; Brisbane; Singapore; Toronto: Wiley-VCH, 1999.

[5] “The python programming language – official website,” http://www.python.org/, Nov. 2006.

[6] T. E. Oliphant, Guide to NumPy. Travis E. Oliphant, 2006.

[7] B. D. Hall, “’bygum’: A python software package for calculating measurement uncertainty,”
Industrial Research Ltd Report 1305, Tech. Rep., 2005.

[8] E. Schrüfer, Elektrische Messtechnik (in German). München; Wien: Hanser, 2001.

[9] W. Kessel, “Meßunsicherheit, ein wichtiges element der qualitätssicherung (in german),”
Physikalisch Technische Bundesanstalt, Tech. Rep., 1999.

[10] J. Oberg, “Why the mars probe went off course,” IEEE Spectr., vol. 36, no. 12, pp. 34–39,
1999.

[11] “Metrodata gmbh : Gum workbench,” http://www.metrodata.de/, Feb. 2007.

[12] “Ptb jahresbericht abteilung 8 (2001),” http://www.ptb.de/de/publikationen/jahresberichte/
jb2001/oe8/nachrichtenausabteilung/abteilung8_12.htm, Feb. 2007.

[13] R. Gupta, Making Use of Python. New York: Wiley Publishing, Inc., 2002.

[14] “Java technology,” http://java.sun.com/, Nov. 2006.

[15] “Microsoft windows family homepage,” http://www.microsoft.com/windows/, Nov. 2006.

[16] “Gnu software foundation,” http://www.gnu.org/, Nov. 2006.

[17] “Apple : Mac os,” http://www.apple.com/macosx/, Nov. 2006.

[18] B. D. Hall, “Calculating measurement uncertainty for complex-valued quantities,” Measure-
ment science and technology, no. 14, pp. 368–375, 2003.

[19] ——, “The ’gum tree’: A software design pattern for handling measurement uncertainty,”
Industrial Research Ltd Report 1291, Tech. Rep., 2003.

[20] ——, “Calculating measurement uncertainty using automatic differentiation,” Measurement
Science and Technology, vol. 13, pp. 421–427, 2002.

[21] M. R. Spiegel and L. J. Stephens, Statistik (in German). Bonn: mitp-Verlag, 2003.

75

http://www.python.org/
http://www.metrodata.de/
http://www.ptb.de/de/publikationen/jahresberichte/jb2001/oe8/nachrichtenausabteilung/abteilung8_12.htm
http://www.ptb.de/de/publikationen/jahresberichte/jb2001/oe8/nachrichtenausabteilung/abteilung8_12.htm
http://java.sun.com/
http://www.microsoft.com/windows/
http://www.gnu.org/
http://www.apple.com/macosx/

[22] B. D. Hall, “’gum++’: A tool for calculating measurement uncertainty in c++,” Industrial
Research Ltd Report 1303, Tech. Rep., 2005.

[23] B. D. Hall and R. Willink, “Does “welch-satterthwaite” make a good uncertainty estimate?”
Metrologia, no. 38, pp. 9–15, 2001.

[24] B. D. Hall and R. D. Willink, “Uncertainty propagation system and method,” U.S. Patent
7,130,761, Oct. 2006.

[25] R. Willink and B. D. Hall, “A classical method for uncertainty analysis with multidimen-
sional data,” Metrologia, no. 39, pp. 361–369, 2002.

[26] M. T. Goodrich and R. Tamassia, Algorithm Design. Singapore: John Wiley and Sons Inc.,
2003.

[27] “Chain rule,” http://en.wikipedia.org/wiki/Chain_rule, Nov. 2006.

[28] E. Hüllermeier, “Lecture notes: Computational statistics,” http://wwwiti.cs.uni-magdeburg.
de/, Otto-von-Guericke University, Magdeburg, Germany, 2005.

[29] J. Börcsök, Fuzzy Control: Theorie und Industrieeinsatz (in German). Berlin: Verlag
Technik, 2000.

[30] J. Banks, J. Carson, and B. L. Nelson, Discrete-event system simulation. Prentice-Hall,
1996.

[31] “Units of measurement,” http://en.wikipedia.org/wiki/Units_of_measurement, Nov. 2006.

[32] B. N. Taylor, “The international system of units (si),” NIST Special Publication 330, Tech.
Rep., 2001.

[33] I. M. Mills, B. N. Taylor, and A. J. Thor, “Definitions of the units radian, neper, bel and
decibel,” Metrologia, vol. 38, pp. 353–361, 2001.

[34] W. H. Emerson, “A reply to "definitions of the units radian, neper, bel and decibel" by i. m.
mills et al.” Metrologia, vol. 39, pp. 105–109, 2002.

[35] H.-G. Krauthäuser, “Lecture notes: Emv messtechnik (in german),” http://www.
uni-magdeburg.de/iget/, Otto-von-Guericke University, Magdeburg, Germany, 2005.

[36] R. Männer, “Strong typing and physical units,” SIGPLAN Not., vol. 21, no. 3, pp. 11–20,
1986.

[37] G. Baldwin, “Implementation of physical units,” SIGPLAN Not., vol. 22, no. 8, pp. 45–50,
1987.

[38] J. L. Hennessy and D. A. Patterson, Computer Organization and Design – The Hardware /
Software Interface. San Francisco, CA, USA: Morgan Kaufmann, 1997.

[39] IEEE Standard for Smart Transducer Interface for Sensors and Actuators - Transducer to
Microprocessor Communication Protocols and Transducer Electronic Datasheet (TEDS),
IEEE 1451.2, IEEE Computer Society, 345 E. 47th St, New York, NY 10017, USA, 1997.

76

http://en.wikipedia.org/wiki/Chain_rule
http://wwwiti.cs.uni-magdeburg.de/
http://wwwiti.cs.uni-magdeburg.de/
http://en.wikipedia.org/wiki/Units_of_measurement
http://www.uni-magdeburg.de/iget/
http://www.uni-magdeburg.de/iget/

[40] JSR 275: Units Specification, http://jcp.org/en/jsr/detail?id=275, Java Community Process,
June 2005.

[41] “Jscience – java tools and libraries for the advancement of sciences,” http://www.jscience.
org/, Nov. 2006.

[42] B. D. Hall, “Software support for physical quantities,” pp. 66–71, 2002.

[43] V. K. Balakrishnan, Graph Theory. McGraw-Hill, 1997.

[44] R. Sedgewick, Algorithms in C++. Addison-Wesley, 1992.

[45] “Dreiecksverteilung (in german),” http://de.wikipedia.org/wiki/Dreiecksverteilung, Nov.
2006.

[46] “Betaverteilung (in german),” http://de.wikipedia.org/wiki/Beta-Verteilung, Nov. 2006.

[47] W. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C –
The Art of Scientific Computing. Cambridge; New York; Port Chester; Melbourne; Sydney:
Cambridge University Press, 1992.

[48] S. Lipschutz, Theory and Problems of Linear Algebra. McGraw-Hill Inc., 1977.

[49] “The wolfram mathworld site,” http://mathworld.wolfram.com/ComplexDifferentiable.
html, Nov. 2006.

[50] “The wolfram functions site,” http://functions.wolfram.com/, Nov. 2006.

77

http://jcp.org/en/jsr/detail?id=275
http://www.jscience.org/
http://www.jscience.org/
http://de.wikipedia.org/wiki/Dreiecksverteilung
http://de.wikipedia.org/wiki/Beta-Verteilung
http://mathworld.wolfram.com/ComplexDifferentiable.html
http://mathworld.wolfram.com/ComplexDifferentiable.html
http://functions.wolfram.com/

78

A. The Depth-First-Search (DFS) Algorithm

In this section we describe the Depth-First-Search (DFS) Algorithm. It is used to traverse nodes in
an connected graph. A special application for this algorithm is the traversal of trees. In Listing 19
we show how a tree is realized in C. Each node contains a value value and has numSubTrees
subtrees that can be reached trough the pointer array aSubTrees.

1 s t r u c t Node {
/ * v a l u e o f t h e node , i . e . a S t r i n g * /

3 char * v a l u e ;
/ * number o f s u b t r e e s * /

5 i n t numSubTrees ;
/ * p o i n t e r s t o s u b t r e e s * /

7 s t r u c t Node ** aSubTrees ;
}

Listing 19: Implementation of a tree-node in C
The tree can be traversed by the code shown in Listing 20. It traverses each subtree recur-

sively, before the current node. Visiting a node can be implemented by implementing the function
visit(struct *Node n). The recursion stops as soon a node is traversed that does not
have any subtrees (i.e. numSubTrees is equal to 0).

void t r a v e r s e (s t r u c t Node * node) {
2 / * i t e r a t e over a l l s u b t r e e s * /

f o r (i n t i =0 ; i < node−>numSubTrees ; i ++) {
4 / * t r a v e r s e each s u b t r e e * /

t r a v e r s e (node−>aSubTrees [i]) ;
6 }

8 / * a f t e r a l l s u b t r e e s are v i s i t e d , v i s i t t h e c u r r e n t node * /
v i s i t (node) ;

10 }

Listing 20: Implementation of a DFS-traversal in C
The general approach to traverse trees is described by Balakrishnan [43]. Examples for imple-

mentations to traverse binary trees and graphs are given by Sedgewick [44].

79

80

B. Mathematical Proofs and Formulas

B.1. Selected Statistical Distributions

In this section we provide an overview of selected probability distributions and their properties.
All distributions, except the bivariate– and multivariate normal distribution, describe scalar ran-
dom variables. The symbols E(X) and V(X) express the expected value and variance of a random
variable X being distributed by the probability density function (PDF) fx(X). Their evaluation is
shown in the Equations 44. Note that the standard uncertainty u(X) of a random variable X being
distributed by a PDF fx(X) is equal to the square root of its variance (u(X) =

√
V(X)).

E(X) =
∫

∞

−∞

xfx(X)dX

V(X) = E(x−E(X))2

= E(x2)− (E(X))2

(44)

B.1.1. Uniform Distribution

The Uniform distribution is expressed by the PDF 45 of a random variable X that can take values
in the interval (a,b) only (see Weise et al [4]).

fx(X) =
1

b−1
; (a < X < b) (45)

Its properties are shown in the Equations 46.

E(X) =
a+b

2

V(X) =
(b−a)2

12

u(X) =
b−a√

12
(46)

If the distribution is expressed using the half-width ∆a = b−a
2 then the uncertainty is given by

u(X) = ∆a√
3
.

B.1.2. Triangular Distribution

The Triangular distribution, sometimes referred to as the Simpson distribution, is expressed by the
PDF 47 of a random variable X that can take values in the interval [a,b] only (see Wikipedia [45]).

fx(X) =

{ 2(x−a)
(b−a)(c−a) (a≤ x≤ c)

2(b−x)
(b−a)(b−c) (c < x < b)

(47)

Its properties are shown in the Equations 48.

81

E(X) =
a+b+ c

3

V(X) =
a2 +b2 + c2−ab−ac−bc

18
u(X) =

√
V(X) (48)

If c = a+b
2 , then this distributions is also referred to as symmetric Triangular distribution. In

this case the half-width is given by ∆a = b−a
2 and u(X) = ∆a√

6
.

B.1.3. Beta Distribution

The Beta distribution is expressed by the PDF 49 of a random variable X (see Wikipedia [46]).

fx(X) =
1

B(p,q)
xp−1 (1− x)q−1

B(p,q) =
∫ 1

0
up−1 (1−u)q−1 du (49)

Its properties are shown in the Equations 50.

E(X) =
p

p+q

V(X) =
pq

(p+q+1)(p+q)2

u(X) =
√

V(X) (50)

If p = q = 1
2 , then this distribution is also referred to as the Arcsine distribution.

B.1.4. Normal Distribution

The normal distribution is expressed by the PDF 51 of a random variable X (see Weise et al [4]).

fx(X) =
1

σ
√

2π
exp(−(x−µ)2

2σ2) (51)

Its properties are shown in the Equations 52.

E(X) = µ

V(X) = σ
2

u(X) = σ (52)

82

B.1.5. Multivariate Normal Distribution

Weise et al [4] provide an expression of a Normal PDF for a vector of random variables X =
[x1,x2, . . . ,xn]T .

fx (X) =
1

2π
√

det(Σ)
exp
(
−1

2
(X−µ)T Σ−1 (X−µ)

)
(53)

Since this distribution describes the vector of random variables X, it cannot be described in
terms of a scalar expected value (E(X)) and variance (V(X)). Instead, the properties are an ex-
pected value vector (E(X)) and a covariance matrix (Cov(X)), shown in the Equations 54. The
covariance matrix expresses the covariance of the components of the random vector. The standard
uncertainty u(X) is the covariance matrix (see Section 4).

E(X) = µ

Cov(X) = Σ

u(X) = Σ (54)

B.1.6. Bivariate Normal Distribution

Hall [18] simplifies the multivariate normal distribution to the bivariate case (i.e. X = [x1,x2]T).
The bivariate normal distribution is expressed by the PDF 53 for a bivariate random vector X =
[x1,x2]T . The evaluation of the expected value, the variance, and the uncertainty is done according
to the multivariate normal distribution.

B.2. Monte-Carlo Integration

In this section we describe the approach of Monte-Carlo (MC) integration, proposed by Hüller-
meier [28]. MC integration is an approximate approach to evaluate bounded multidimensional
integrals. Consider the integral shown in Equation 55.

I =
∫ b

a
h(x)dx (55)

I =
∫ b

a
w(x) f (x)dx (56)

w(x) = h(x)(b−a)
h(x) = (b−a)−1

We can rewrite the integral shown in Equation 55 to the form shown in Equation 56. From the
perspective probability theory this is the expected value of w(x) of a uniformly distributed random
variable x.

Î =
1
N

n

∑
i=1

w(xi) (57)

ŝe =
s√
n

(58)

83

s2 =
∑

n
i=1
(
w(xi)− Î

)2

n−1

The expected value can be estimated by drawing n samples from a uniform distribution that has
the parameters a and b. The estimation is performed using Equation 57. The standard error of the
estimate is given by the Equation 58.

The major advantage of MC integration compared to other numerical integration procedures
is that the standard error does not directly depend on the dimensionality of the problem. Other
numerical integration procedures, such as the Runge-Kutta method (see Press et al. [47]), are
usually applied iteratively on multidimensional integrals. Therefore the error directly depends on
the dimensionality of the problem. One drawback of the MC method is that it converges slowly
as implied by Equation 58.

B.3. The Central Limit Theorem

Let X1,X2, . . . be sequence of independent identically distributed random variables. Then the sum
Yn = ∑i Xi has the expected value E(Yn) = nµ and the variance V(Yn) = nσ2. The distribution
of the sum Yn converges in distribution to the normal distribution N(nµ,nσ2) as n approaches ∞,
shown in Equation 59.

Zn =
Yn−nµ√

nσ

lim
n→∞

Pr(Zn < z) = Φ(z) (59)

Φ(z) denotes the cummulative distribution function of the standard normal distribution [28].

B.4. Proof of the Equality of Both Approaches for Propagating Complex-Valued
Uncertainty

In this Section we prove that both approaches of evaluating the uncertainty of complex-valued
quantities (see Section 4) return equal results. From our perspective such a prove is necessary,
since their equality is not obvious, and Hall’s approach proposed in [7] is lacking a direct reference
to [18].

It is to prove that the equations 60 and 61 are equal. For a detailed description of their compo-
nents see Section 4.

Vy =
∂f

∂x
×Vx×

(
∂f

∂x

)T

(60)

V (y) =
m

∑
i=1

m

∑
i= j

Ui(y)Ri j(X)Uj(y)T (61)

We begin by introducing the elements of the factors of equation 60. Since the matrix Vx is a
covariance matrix, its components can be replaced using the relation of correlation coefficients
and the covariance, shown in Equation 62. The value u(xi) denotes the input uncertainty of the

84

respective input x(i) of the vector of the input quantities, denoted by x.

cov(xi,x j) = cov(x j,xi) = u(xi)u(x j)r(xi,x j) i = 1,2, . . . ,2m; j = 1,2, . . . ,2m (62)

The value m is the number of complex-valued input quantities. The input quantities have al-
ready been decomposed into their respective real and imaginary parts, as discussed in Section 4.
Thus the index x(i ·2−1) represents the real part and the index x(i ·2) expresses the imaginary

part of the complex-valued input quantity zi i = 1,2, ..,m respectively. The matrix
∂f

∂x
expresses

the Jacobian matrix of the model function with respect to all inputs. In the Equations 63, we show
the components of the matrices we used in Equation 60.

Vx =


u(x1)u(x1)r(x1,x1) u(x1)u(x2)r(x1,x2) . . . u(x1)u(x2m)r(x1,x2m)
u(x2)u(x1)r(x2,x1) u(x2)u(x2)r(x2,x2) . . . u(x2)u(x2m)r(x2,x2m)

...
...

. . .
...

u(x2m)u(x1)r(x2m,x1) u(x2m)u(x2)r(x2m,x2) . . . u(x2m)u(x2m)r(x2m,x2m)


f = f1(x)+ j f2(x)

∂f

∂x
=

[
∂ f1
∂x1

∂ f1
∂x2

. . . ∂ f1
∂x2m

∂ f2
∂x1

∂ f2
∂x2

. . . ∂ f2
∂x2m

]

(
∂f

∂x

)T

=


∂ f1
∂x1

∂ f2
∂x1

∂ f1
∂x2

∂ f2
∂x2

...
...

∂ f1
∂x2m

∂ f2
∂x2m

 (63)

In order to keep the notation compact, we apply the following simplifications.

n = 2m

Vx =


c11 c12 . . . c1n

c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn


ci j = u(xi)u(x j)r(xi,x j); i = 1,2, . . . ,n; j = 1,2, . . . ,n

∂f

∂x
=

[
y11 y12 . . . y1n

y21 y22 . . . y2n

]
(

∂f

∂x

)T

=


y11 y21
y12 y22
...

...
y1n y2n


y1i =

∂ f1

∂xi
; i = 1,2, . . . ,n

85

y2i =
∂ f2

∂xi
; i = 1,2, . . . ,n

By the means of Linear Algebra (i.e. Lipschutz [48]) we obtain Equation 66 after the interme-
diate steps shown in the Equations 64 and 65.

M1 =
∂f

∂x
×Vx (64)

=
[

y11 y12 . . . y1n

y21 y22 . . . y2n

]
×


c11 c12 . . . c1n

c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn


=

[
∑

n
i=1 ci1y1i ∑

n
i=1 ci2y1i . . . ∑

n
i=1 ciny1n

∑
n
i=1 ci1y2i ∑

n
i=1 ci2y2i . . . ∑

n
i=1 ciny2n

]
Vy = M1×

(
∂f

∂x

)T

(65)

=
[

∑
n
i=1 ci1y1i ∑

n
i=1 ci2y1i . . . ∑

n
i=1 ciny1n

∑
n
i=1 ci1y2i ∑

n
i=1 ci2y2i . . . ∑

n
i=1 ciny2n

]
×


y11 y21
y12 y22
...

...
y1n y2n


=

[
∑

n
j=1 ∑

n
i=1 ci jy1iy1 j ∑

n
j=1 ∑

n
i=1 ci jy1iy2 j

∑
n
j=1 ∑

n
i=1 ci jy2iy1 j ∑

n
j=1 ∑

n
i=1 ci jy2iy2 j

]

=

∑
n
j=1 ∑

n
i=1 r(xi,x j)u(xi)u(x j)

∂ f1

∂xi

∂ f1

∂x j
∑

n
j=1 ∑

n
i=1 r(xi,x j)u(xi)u(x j)

∂ f1

∂xi

∂ f2

∂x j

∑
n
j=1 ∑

n
i=1 r(xi,x j)u(xi)u(x j)

∂ f2

∂xi

∂ f1

∂x j
∑

n
j=1 ∑

n
i=1 r(xi,x j)u(xi)u(x j)

∂ f2

∂xi

∂ f2

∂x j


=

2m

∑
i=1

2m

∑
j=1

[
∂ f1
∂xi

u(xi)r(xi,x j)
∂ f1
∂x j

u(x j)
∂ f1
∂xi

u(xi)r(xi,x j)
∂ f2
∂x j

u(x j)
∂ f2
∂xi

u(xi)r(xi,x j)
∂ f1
∂x j

u(x j)
∂ f2
∂xi

u(xi)r(xi,x j)
∂ f2
∂x j

u(x j)

]
(66)

After presenting a formula how to calculate each element of the covariance matrix that ex-
presses the combined standard uncertainty for the approach proposed by Hall in [18], we decom-
pose equation 61 the same way. Hall [7] used another indexing scheme for the components of
uncertainty in this approach. The value x1i expresses the real part and the value x2i expresses
the imaginary part of the complex-valued input quantity zi. We will later apply a transforma-
tion to this indexing scheme in order to make it comparable to the scheme used for the approach
proposed by Hall in [18]. The matrix Uj(y) expresses the Jacobian matrix of the model Func-
tion f with respect to the complex-valued input quantity zj exclusively. The matrix u(zj) con-
tains the input uncertainties of the complex-valued input quantity zj , as shown in Equation 67.
The matrix Ri j(X) contains the correlation coefficients of the real and imaginary parts of the
complex-valued input quantities zi and zj , as shown in Equation 68.

Uj(y) =
∂f

∂zj
×u(zj)

86

=

[
∂ f1
∂x1 j

∂ f1
∂x2 j

∂ f2
∂x1 j

∂ f2
∂x2 j

]
×
[

u(x1 j) 0
0 u(x2 j)

]
(67)

=

[
∂ f1
∂x1 j

u(x1 j)
∂ f1
∂x2 j

u(x2 j)
∂ f2
∂x1 j

u(x1 j)
∂ f2
∂x2 j

u(x2 j)

]

Ri j(X) =
[

r(x1i,x1 j) r(x1i,x2 j)
r(x2i,x2 j) r(x2i,x2 j)

]
(68)

By the means of Linear Algebra (i.e. Lipschutz [48]) we obtain Equation 72 after the interme-
diate steps shown in the Equations 69 and 70.

N1 = Ri j(X)×Uj(Y)T (69)

=
[

r(x1i,x1 j) r(x1i,x2 j)
r(x2i,x2 j) r(x2i,x2 j)

]
×

[
∂ f1
∂x1 j

∂ f2
∂x1 j

∂ f1
∂x2 j

∂ f2
∂x2 j

]

=

[
∑

2
k=1 r(x1i,xk j)

∂ f1
∂xk j

∑
2
k=1 r(x1i,xk j)

∂ f2
∂xk j

∑
2
k=1 r(x2i,xk j)

∂ f1
∂xk j

∑
2
k=1 r(x2i,xk j)

∂ f2
∂xk j

]
N2 = Ui(Y)×N1 (70)

(71)

=

[
∑

2
h=1 ∑

2
k=1

∂ f1
∂xhi

u(xhi)r(xhi,xk j)
∂ f1
∂xk j

u(xk j) ∑
2
h=1 ∑

2
k=1

∂ f1
∂xhi

u(xhi)r(xhi,xk j)
∂ f2
∂xk j

u(xk j)

∑
2
h=1 ∑

2
k=1

∂ f2
∂xhi

u(xhi)r(xhi,xk j)
∂ f1
∂xk j

u(xk j) ∑
2
h=1 ∑

2
k=1

∂ f2
∂xhi

u(xhi)r(xhi,xk j)
∂ f2
∂xk j

u(xk j)

]

V (y) =
m

∑
i=1

m

∑
j=1

2

∑
h=1

2

∑
k=1

[
∂ f1
∂xhi

u(xhi)r(xhi,xk j)
∂ f1
∂xk j

u(xk j)
∂ f1
∂xhi

u(xhi)r(xhi,xk j)
∂ f2
∂xk j

u(xk j)
∂ f2
∂xhi

u(xhi)r(xhi,xk j)
∂ f1
∂xk j

u(xk j)
∂ f2
∂xhi

u(xhi)r(xhi,xk j)
∂ f2
∂xk j

u(xk j)

]
(72)

Since i = 1,2, . . . ,m and j = 1,2, . . . ,m, we can apply the index transformation 73 and obtain
the same result as shown in Equation 66. Therefore both approaches to propagate the uncertainty
of complex-valued uncertainties proposed by Hall [7, 18] return equal results.

2m

∑
i=1

:=
m

∑
i=1

2

∑
k=1

2m

∑
j=1

:=
m

∑
j=1

2

∑
h=1

xi := xhi

x j := xk j (73)

V (y) =
2m

∑
i=1

2m

∑
j=1

[
∂ f1
∂xi

u(xi)r(xi,x j)
∂ f1
∂x j

u(x j)
∂ f1
∂xi

u(xi)r(xi,x j)
∂ f2
∂x j

u(x j)
∂ f2
∂xi

u(xi)r(xi,x j)
∂ f1
∂x j

u(x j)
∂ f2
∂xi

u(xi)r(xi,x j)
∂ f2
∂x j

u(x j)

]
(74)

87

Quod erat demonstrandum.

B.5. Complex Differentiable Functions and the Cauchy-Riemann Equations

In this section we describe the Cauchy-Riemann equations and how they can be used to obtain the
Jacobian matrix for complex-valued functions. According to Wolfram Research [49], a complex
function, shown in Equation 75), is called complex differentiable on some region G containing the
point z0 if and only if f(z) has continuous first partial derivates and satisfies the Cauchy-Riemann
equations (see Equations 76).

f(z) = u(x,y)+ jv(x,y); z = a+ jb (75)
∂u
∂x

=
∂v
∂y

∂v
∂x

= −∂u
∂y

(76)

The derivate is then given by Equation 77.

∂f

∂z
(z0) = lim

z→z0

f(z)−f(z0)
z−z0

(77)

A function is complex differentiable if and only if its Jacobian matrix is of the Form 78.

J =
[

A −B
B A

]
(78)

According to Hall [18], this principle can be extended to functions having multiple complex-
valued input parameters, such as shown in Equation 79.

f (z1,z2, . . . ,zn) = u(z1,z2, . . . ,zn)+ jv(z1,z2, . . . ,zn) (79)

In this case, the complex Jacobian matrix is obtained first, shown in Equation 80. After that, the
elements of the complex Jacobian matrix are transformed using the Transformation 81, obtaining
the Jacobian matrix, shown in Equation 82. For the equations below let zi = xi + jyi.

Jz =
[

∂f

∂z1

∂f

∂z2
. . .

∂f

∂zn

]
(80)

M(
∂f

∂zi
) =


∂u
∂xi

− ∂v
∂yi

∂v
∂yi

∂u
∂xi

 (81)

J =


∂u
∂x1

− ∂v
∂y1

∂u
∂x2

− ∂v
∂y2

. . .
∂u
∂xn

− ∂v
∂yn

∂v
∂y1

∂u
∂x1

∂v
∂y2

∂u
∂x2

. . .
∂v
∂yn

∂u
∂xn

 (82)

88

B.6. Derivation of Selected Complex-Valued Functions

In this section, we derive the Jacobian Matrices for the complex-valued functions that are imple-
mented in our class library. These matrices are crucial for calculating the uncertainty of complex
valued input parameters, as discussed in Section 4. The general approach to derive Jacobian
matrices of complex valued functions is described below.

1. The complex characteristics are calculated. That is deriving a formula for the real Part ℜ(f)
and one formula for the imaginary Part ℑ(f) of the respective Function f .

2. Partial derivation is applied to the complex Characteristics.
3. The partial derivates are placed into the Jacobian matrix J(f), shown in Equation 83.

J(f) =

[
∂

∂x ℜ(f) ∂

∂y ℜ(f)
∂

∂x ℑ(f) ∂

∂y ℑ(f)

]
(83)

Hall [18] describes another approach for complex valued functions that fulfil the Cauchy-
Riemann equations, described in Section B.5. A function that fulfils this criterion is also referred
to as analytic or holomorphic. His approach can be divided into the following intermediate steps.

1. Check the function for analyticity.
2. Evaluate the complex Jacobian matrix Jz, shown in Equation 84.
3. Transform the complex Jacobian matrix Jz into a scalar Jacobian matrix J, shown in Equa-

tion 85.
Because of its complexity, we do not evaluate Point 1 explicitly in this Section for the functions

we used. Instead, we cite an appropriate source where the analyticity has already been evaluated.

f (z1,z2, . . . ,zm) = u(x1,y1,x2,y2, . . . ,xm,ym)+ jv(x1,y1,x2,y2, . . . ,xm,ym)

Jz(f) =
[

∂ f
∂z1

∂ f
∂z2

. . . ∂ f
∂zm

]
(84)

M(Jz(f)) = J(f) =


∂u
∂x1

− ∂v
∂y1

∂u
∂x2

− ∂v
∂y2

. . .
∂u

∂xm
− ∂v

∂ym
∂v
∂y1

∂u
∂x1

∂v
∂y2

∂u
∂x2

. . .
∂v

∂ym

∂u
∂xm

 (85)

B.6.1. Absolute Value

Properties
Operator: |z|
Domain : Defined over the entire complex plane

Analyticity: Not analytical, as seen in Equations 86.

|z|=
√

x2 + y2 : C→ R
∂

∂x
|z| =

x√
x2 + y2

∂

∂y
|z| =

y√
x2 + y2

89

J(|z|) =

[
x√

x2+y2

y√
x2+y2

0 0

]
(86)

B.6.2. Complex Conjugate

Properties
Operator: z̄

Domain : Defined over the entire complex plane
Analyticity: Not analytical, as seen in Equations 87.

z̄ = x+ iy = x− iy : C→ C
ℜ(z̄) = x

ℑ(z̄) = −y
∂

∂x
ℜ(z̄) = 1

∂

∂y
ℜ(z̄) = 0

∂

∂x
ℑ(z̄) = 0

∂

∂y
ℑ(z̄) = −1

J(z̄) =
[

1 0
0 −1

]
(87)

B.6.3. Negation

Properties
Operator: z̄

Domain : Defined over the entire complex plane
Analyticity: Analytical, as seen in Equations 88.

−z =−(x+ iy) =−x− iy : C→ C
ℜ(−z) = −x

ℑ(−z) = −y
∂

∂x
ℜ(−z) = −1

∂

∂y
ℜ(−z) = 0

∂

∂x
ℑ(−z) = 0

∂

∂y
ℑ(−z) = −1

90

J(−z) =
[
−1 0
0 −1

]
(88)

B.6.4. Inversion

Properties
Operator: z−1

Domain : Defined over the entire complex plane
Analyticity: Analytical, as seen in Equations 89.

z−1 =
1
z

: C→ C

∂

∂z
z−1 = − 1

z2

J(z−1) =
[

ℜ(− 1
z2) −ℑ(− 1

z2)
ℑ(− 1

z2) ℜ(− 1
z2)

]
(89)

B.6.5. Square-Root

Properties
Operator:

√
z

Domain : Defined over the entire complex plane
Analyticity: Analytical, according to the Wolfram Function Site [50].

√
z : C→ C

∂

∂z

√
z =

1
2
√

z

J(
√

z) =

[
ℜ(1

2
√

z
) −ℑ(1

2
√

z
)

ℑ(1
2
√

z
) ℜ(1

2
√

z
)

]
(90)

B.6.6. Exponential Function

Properties
Operator: exp(z)
Domain : Defined over the entire complex plane

Analyticity: Analytical, according to the Wolfram Function Site [50].

exp(z) : C→ C
∂

∂z
exp(z) = exp(z)

J(exp(z)) =
[

ℜ(exp(z)) −ℑ(exp(z))
ℑ(exp(z)) ℜ(exp(z))

]
(91)

91

B.6.7. Natural Logarithm

Properties
Operator: ln
Domain : Defined over the entire complex plane

Analyticity: Analytical, according to the Wolfram Function Site [50].

ln(z) : C→ C
∂

∂z
ln(z) =

1
z

J(ln(z)) =
[

ℜ(1
z) −ℑ(1

z)
ℑ(1

z) ℜ(1
z)

]
(92)

B.6.8. Sine Function

Properties
Operator: sin(z)
Domain : Defined over the entire complex plane

Analyticity: Analytical, according to the Wolfram Function Site [50].

sin(z) : C→ C
∂

∂z
sin(z) = cos(z)

J(sin(z)) =
[

ℜ(cos(z)) −ℑ(cos(z))
ℑ(cos(z)) ℜ(cos(z))

]
(93)

B.6.9. Cosine Function

Properties
Operator: cos(z)
Domain : Defined over the entire complex plane

Analyticity: Analytical, according to the Wolfram Function Site [50].

cos(z) : C→ C
∂

∂z
cos(z) = −sin(z)

J(cos(z)) =
[

ℜ(−sin(z)) −ℑ(−sin(z))
ℑ(−sin(z)) ℜ(−sin(z))

]
(94)

92

B.6.10. Tangent Function

Properties
Operator: tan(z)
Domain : Defined over the entire complex plane,

except for the values shown in Equation 95
Analyticity: Analytical, according to the Wolfram Function Site [50].

tan(z) : C→ C; z 6= π

2
+ kπ; k ∈ Z

∂

∂z
tan(z) =

1
cos2(z)

J(tan(z)) =

[
ℜ(1

cos2(z)) −ℑ(1
cos2(z))

ℑ(1
cos2(z)) ℜ(1

cos2(z))

]
(95)

B.6.11. Inverse Sine Function (Arc-Sine Function)

Properties
Operator: sin−1(z)
Domain : Defined over the entire complex plane

Analyticity: Analytical, according to the Wolfram Function Site [50].

sin−1(z) : C→ C
∂

∂z
sin−1(z) =

1√
1−z2

J(sin−1(z)) =

[
ℜ(1√

1−z2) −ℑ(1√
1−z2)

ℑ(1√
1−z2) ℜ(1√

1−z2)

]
(96)

B.6.12. Inverse Cosine Function (Arc-Cosine Function)

Properties
Operator: cos−1(z)
Domain : Defined over the entire complex plane

Analyticity: Analytical, according to the Wolfram Function Site [50].

cos−1(z) : C→ C
∂

∂z
cos−1(z) = − 1√

1−z2

J(cos−1(z)) =

[
ℜ(− 1√

1−z2) −ℑ(− 1√
1−z2)

ℑ(− 1√
1−z2) ℜ(− 1√

1−z2)

]
(97)

93

B.6.13. Inverse Tangent Function (Arc-Tangent Function)

Properties
Operator: tan−1(z)
Domain : Defined over the entire complex plane

Analyticity: Analytical, according to the Wolfram Function Site [50].

tan−1(z) : C→ C
∂

∂z
tan−1(z) =

1
z2 +1

J(tan−1(z)) =
[

ℜ(1
z2+1) −ℑ(1

z2+1)
ℑ(1

z2+1) ℜ(1
z2+1)

]
(98)

B.6.14. Hyperbolic Sine Function

Properties
Operator: sinh(z)
Domain : Defined over the entire complex plane

Analyticity: Analytical, according to the Wolfram Function Site [50].

sinh(z) : C→ C
∂

∂z
sinh(z) = cosh(z)

J(sinh(z)) =
[

ℜ(cosh(z)) −ℑ(cosh(z))
ℑ(cosh(z)) ℜ(cosh(z))

]
(99)

B.6.15. Hyperbolic Cosine Function

Properties
Operator: cosh(z)
Domain : Defined over the entire complex plane

Analyticity: Analytical, according to the Wolfram Function Site [50].

cosh(z) : C→ C
∂

∂z
cosh(z) = sinh(z)

J(cosh(z)) =
[

ℜ(sinh(z)) −ℑ(sinh(z))
ℑ(sinh(z)) ℜ(sinh(z))

]
(100)

94

B.6.16. Hyperbolic Tangent Function

Properties
Operator: tanh(z)
Domain : Defined over the entire complex plane,

except for the values shown in Equation 101
Analyticity: Analytical, according to the Wolfram Function Site [50].

tanh(z) : C→ C; z 6= πi
2

+ kπi; k ∈ Z

∂

∂z
tanh(z) =

1
cosh2(z)

J(tanh(z)) =

[
ℜ(1

cosh2(z)
) −ℑ(1

cosh2(z)
)

ℑ(1
cosh2(z)

) ℜ(1
cosh2(z)

)

]
(101)

B.6.17. Inverse Hyperbolic Sine Function

Properties
Operator: sinh−1(z)
Domain : Defined over the entire complex plane

Analyticity: Analytical, according to the Wolfram Function Site [50].

sinh−1(z) : C→ C
∂

∂z
sinh−1(z) =

1√
1+z2

J(sinh−1(z)) =

[
ℜ(1√

1+z2) −ℑ(1√
1+z2)

ℑ(1√
1+z2) ℜ(1√

1+z2)

]
(102)

B.6.18. Inverse Hyperbolic Cosine Function

Properties
Operator: cosh−1(z)
Domain : Defined over the entire complex plane

Analyticity: Analytical, according to the Wolfram Function Site [50].

cosh−1(z) : C→ C
∂

∂z
cosh−1(z) =

1√
z−1

√
z +1

J(cosh−1(z)) =

[
ℜ(1√

z−1
√

z+1
) −ℑ(1√

z−1
√

z+1
)

ℑ(1√
z−1

√
z+1

) ℜ(1√
z−1

√
z+1

)

]
(103)

95

B.6.19. Inverse Hyperbolic Tangent Function

Properties
Operator: tanh−1(z)
Domain : Defined over the entire complex plane

Analyticity: Analytical, according to the Wolfram Function Site [50].

tanh−1(z) : C→ C
∂

∂z
tanh−1(z) =

1
1−z2

J(tanh−1(z)) =
[

ℜ(1
1−z2) −ℑ(1

1−z2)
ℑ(1

1−z2) ℜ(1
1−z2)

]
(104)

B.6.20. Complex Addition

Properties
Operator: z1 +z2

Domain : Defined over the entire complex plane
Analyticity: Analytical

za : C×C→ C
∂

∂z1
z1 +z2 = 1

∂

∂z2
z1 +z2 = 1

J(z1 +z2) =
[

1 0 1 0
0 1 0 1

]
(105)

B.6.21. Complex Multiplication

Properties
Operator: z1z2

Domain : Defined over the entire complex plane
Analyticity: Analytical, according to Hall [18].

z1z2 : C×C→ C
∂

∂z1
z1z2 = z2

∂

∂z2
z1z2 = z1

J(z1z2) =
[

ℜ(z2) −ℑ(z2) ℜ(z1) −ℑ(z1)
ℑ(z2) ℜ(z2) ℑ(z1) ℜ(z1)

]
(106)

96

B.6.22. Complex Division

Properties
Operator: z1z−1

2

Domain : Defined over the entire complex plane
Analyticity: Analytical

z1z−1
2 : C×C→ C

∂

z1
z1z−1

2 = z−1
2

∂

z2
z1z−1

2 = −z1z−2
2

J(z1 +z2) =
[

ℜ(z−1
2) −ℑ(z−1

2) ℜ(−z1z−2
2) −ℑ(−z1z−2

2)
ℑ(z−1

2) ℜ(z−1
2) ℑ(−z1z−2

2) ℜ(−z1z−2
2)

]
(107)

B.6.23. Complex Powers

Properties
Operator: za

Domain : Defined over the entire complex plane
Analyticity: Analytical, according to the Wolfram Function Site [50].

za : C×C→ C
∂

∂z
za = aza−1

∂

∂a
za = zaln(z)

J(za) =
[

ℜ(aza−1) −ℑ(aza−1) ℜ(zaln(z)) −ℑ(zaln(z))
ℑ(aza−1) ℜ(aza−1) ℑ(zaln(z)) ℜ(zaln(z))

]
(108)

B.6.24. Inverse Two-Argument Tangent Function

Properties
Operator: tan−1

2 (x,y)
Domain : Defined over the entire complex plane

Analyticity: Analytical, according to the Wolfram Function Site [50].

tan−1
2 : C×C→ C

∂

∂x
tan−1

2 (x,y) =
y

x2 +y2

∂

∂y
tan−1

2 (x,y) =
x

x2 +y2

97

J(za) =

[
ℜ(y

x2+y2) −ℑ(y
x2+y2) ℜ(x

x2+y2) −ℑ(x
x2+y2)

ℑ(y
x2+y2) ℜ(y

x2+y2) ℑ(x
x2+y2) ℜ(x

x2+y2)

]
(109)

98

C. SCUQ Programming Manual

In this section we included the SCUQ programming manual. It includes a complete interface
description of all classes and all functions of SCUQ. Furthermore, it documents the following:

• Installation and verification instructions.
• A documentation of all modules and files of the SCUQ software distribution.
• More examples demonstrating the use of SCUQ.
• Coercion rules of the data types implemented.

In order to save space, we packed two pages of the programming manual onto one page of this
section. This programming manual can also be created from the source code of SCUQ in HTML-
or PDF format, which we describe later this section.

99

CONTENTS 1

Contents

1 SCUQ - A Class Library for the Evaluation of Scalar- and Complex-valued
Uncertain Quantities. 1

2 SCUQ Module Documentation 2

3 SCUQ Namespace Documentation 24

4 SCUQ Class Documentation 37

5 SCUQ File Documentation 333

6 SCUQ Example Documentation 348

7 SCUQ Page Documentation 353

1 SCUQ - A Class Library for the Evaluation of Scalar-
and Complex-valued Uncertain Quantities.

This class library supports the evaluation of scalar (real) and complex-valued uncertain
quantities. We divided the the library into the following modules.

• The module scuq.units (p. 35) supports modeling and converting physical units.

• The module scuq.si (p. 30) uses the units module to support SI units.

• The module scuq.arithmetic (p. 25). This module contains functions to assist
the other modules in this libary. It also contains a RationalNumber type accord-
ing to PEP-239 (see link shown below).

• The module scuq.quantities (p. 29) allows combining units, numeric types, and
uncertain components modeling physical quantities.

• The module scuq.ucomponents (p. 33) module models uncertain values. It can
be used in combination with the other modules to model uncertainty in measure-
ments by assigning an uncertainty to a numeric value and propagating it through
a mathematical model. The implementation uses the GUM-Tree pattern (see
references shown below).

• The module scuq.cucomponents (p. 26) can be used to evaluate the uncertainty
of complex-valued models in a similar way as the module scuq.ucomponents
(p. 33) does.

Attention:

In contrast to the practice of explicit type checking and raising a TypeError
if an argument is invalid, we use assertions. This gives you the opportunity to

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

1 SCUQ - A Class Library for the Evaluation of Scalar- and Complex-valued
Uncertain Quantities. 2

check your assignments in debug mode and running (relatively) fast code in release
mode. The debug mode is enabled by default when invoking Python with python
<Your Code> and python -O <Your Code> for release mode.
You should use UTF-8 as default encoding because Greek letters represent some
physical quantities, units, and dimensions. However, you will still be able to use
this library if you have another default encoding. The symbols will then not print
correctly.
In this documentation the term integer refers to they Python type int as well
as long. This library casts all int arguments to long where applicable. This
makes overflows unlikely, since the precision of long is limited by the platforms
available memory in Python; that said, you will most likely encounter a Memory-
Error if the accuracy of a long variable is exausted.

Note:

The patterns used to create the units, dimensions, and unit-operators have been
inspired by Java Specification Request 275 that is implemented in JScience
(see link shown below), an open-source library for scientific computing in Java.
The design patterns used for the evaluation of uncertainty are subject to United
States patent number 7,130,761. You should arrange with the patent holders if
you want to use this software within the United States of America for commercial
purposes. Their patent claims cover a wide variety of the field of automatic uncer-
tainty propagation. Therefore our extensions to their proposal may also be subject
to the claims of that patent. In order to stop the spread of e-patents in Europe,
please support us and sign the petition for Software Patent Free Europe (see link
shown below).
There exists an alternative package for Python issued by the patent holders that
allows the automatic propagation of uncertainty. Unfortunately this package does
not provide any support for physical quantities and units. This package does also
not integrate the standard numpy module and is therefore less flexible than our
package.

Author:

Thomas Reidemeister

See also:

• Installation Instructions (p. 356).

• The Java Scientific Library
(http://www.jscience.org)

• Java Specification Request - 275
(http://www.jcp.org/jsr/detail/275.jsp)

• "The "GUM Tree": A software design pattern for handling
measurement uncertainty"; B. D. Hall; Industrial Research Report 1291;
Measurements Standards Laboratory New Zealand (2003).

• "byGUM: A Python software package for calculating measurement uncer-
tainty"; B. D. Hall; Industrial Research Report 1305; Measurements Stan-
dards Laboratory New Zealand (2005).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

2 SCUQ Module Documentation 3

• Petition for a Software Patent Free Europe
(http://www.noepatents.org/).

• United States Patent and Trademark Office
(http://www.uspto.gov/patft/)

• PEP-239 - Adding a Rational Type to Python
(http://www.python.org/dev/peps/pep-0239/)

2 SCUQ Module Documentation

2.1 The Arithmetic Module

2.1.1 Detailed Description

This module contains several functions, classes, and constants that are used for numeric
computations in the other modules of this library.

Author:

Thomas Reidemeister

Classes

• class RationalNumber
This class provides support for rational numbers.

Functions

• def complex_to_matrix
This function converts a complex number to a column vector.

• def gcd
Calculate the greatest common divisor.

• def rational
This function provides an interface for rational numbers creation, as suggested in
PEP 239.

Variables

• string INFINITY = "inf"
Global constant for infinity that is used in combination with the degrees of freedom
evaluation.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

2.1 The Arithmetic Module 4

2.1.2 Function Documentation

2.1.2.1 def scuq::arithmetic::complex_to_matrix (c)

This function converts a complex number to a column vector.

Parameters:

c A complex number (a,b).

Returns:

An instance of numpy.matrix.

2.1.2.2 def scuq::arithmetic::gcd (m, n)

Calculate the greatest common divisor.

Parameters:

n First integer value (greater or equal to zero).

m Second value (greater or equal to zero).

Returns:

The greatest common divisor of the inputs.

2.1.2.3 def scuq::arithmetic::rational (n, d)

This function provides an interface for rational numbers creation, as suggested in PEP
239.

Parameters:

d The denominator (must be an interger type).

n The nominator (must be an integer type).

Returns:

An instance of RationalNumber (p. 210)

2.1.3 Variable Documentation

2.1.3.1 string INFINITY = "inf" [static]

Global constant for infinity that is used in combination with the degrees of freedom
evaluation.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

2.2 The Complex Uncertainty Module 5

2.2 The Complex Uncertainty Module

2.2.1 Detailed Description

This module contains classes to model complex uncertain values.

Attention:

You should either use the module ucomponents or this module. Do not use both
modules at once!

Author:

Thomas Reidemeister

Classes

• class Abs
This class models taking the absolute value of a complex function.

• class Add
This class models adding two complex values.

• class ArcCos
This class models the inverse cosine function.

• class ArcCosh
This class models the inverse hyperbolic cosine function.

• class ArcSin
This class models the inverse sine function.

• class ArcSinh
This class models the inverse hyperbolic sine function.

• class ArcTan
This class models the inverse tangent function.

• class ArcTan2
This class models two-argument inverse tangent.

• class ArcTanh
This class models the inverse hyperbolic tangent function.

• class CBinaryOperation
This abstract class models a binary operation.

• class Conjugate

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

2.2 The Complex Uncertainty Module 6

This class models taking the negative of a complex value.

• class Context
This class provides a context for complex-valued uncertainty evaluations. It manages
the correlation coefficients and is able to evaluate the effective degrees of freedom.

• class Cos
This class models the cosine function.

• class Cosh
This class models the hyperbolic cosine function.

• class CUnaryOperation
This abstract class models an unary operation.

• class CUncertainComponent
This is the abstract super class of all complex valued uncertain components. Despite
defining the interface for complex valued uncertain components, it also provides a set
of factory methods that act as an interface for numpy.

• class CUncertainInput
This class models a complex-valued input of a function.

• class Div
This class models dividing two complex values.

• class Exp
This class models the exponential function ex. x denotes the sibling of this instance.

• class Inv
This class models inverting complex values. Let an instance of this class model the
complex value x then this class models 1

x
.

• class Log
This class models logarithms having a real base. However, the base cannot be uncer-
tain.

• class Mul
This class models multiplying two complex values.

• class Neg
This class models taking the negative of a complex value.

• class Pow
This class models complex powers.

• class Sin

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

2.3 The Operators Module 7

This class models the sine function.

• class Sinh
This class models the hyperbolic sine function.

• class Sqrt
This class models taking the square root of an uncertain component.

• class Sub
This class models taking the difference of two complex values.

• class Tan
This class models the tangent function.

• class Tanh
This class models the hyperbolic tangent function.

Functions

• def complex_to_matrix
This function transforms a complex value into a matrix.

2.2.2 Function Documentation

2.2.2.1 def scuq::cucomponents::complex_to_matrix (value)

This function transforms a complex value into a matrix.

Parameters:

value The complex value.

Returns:

A 2x2-matrix containing the value.

2.3 The Operators Module

2.3.1 Detailed Description

This module contains the classes necessary to define, handle, and use operators on
units.

Author:

Thomas Reidemeister

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

2.4 The Exceptions Module 8

Classes

• class __ExpOperator__
This class provides an Interface for exponential operators. It is used as helper for the
LogOperator (p. 156).

• class AddOperator
This class provides an Interface for offset operators.

• class CompoundOperator
Compound Operator.

• class Identity
This class provides an Interface for the identity Operator.

• class LogOperator
This class provides an interface for logarithmic operators.

• class MultiplyOperator
This class provides an Interface for factor operators.

• class UnitOperator
Basic abstract Operator to use on units.

Variables

• tuple IDENTITY = Identity()

2.3.2 Variable Documentation

2.3.2.1 tuple IDENTITY = Identity() [static]

Global Identity (p. 148) Operator.

Since there is only one Identity (p. 148), it is defined global here.

2.4 The Exceptions Module

2.4.1 Detailed Description

This module contains the classes to model, handle, and use special qexceptions that
may occur while using of units and quantities.

Author:

Thomas Reidemeister

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

2.5 The Quantities Module 9

Classes

• class ConversionException
General exception that is raised whenever a unit conversion fails.

• class NotDimensionlessException
Exception that is raised whenever a a unit is not dimensionless where it has to be.

• class QuantitiesException
General class for qexceptions of this module.

• class UnitExistsException
Exception that is raised when a dimension, base unit, or alternate unit of the same
type has already been created.

• class UnknownUnitException
An exception that is raised whenever an unexpected unit was used.

2.5 The Quantities Module

2.5.1 Detailed Description

This module contains the classes to model, handle, and use physical quantities. Be-
cause of Pythons nature of weak typing, this implementation strongly differs from the
jsr-275. In our interpretation a Quantity (p. 184) is a tuple of a numeric value and a
unit. Therefore we provide a class Quantity (p. 184) that emulates a numeric type and
checks explicitly for consistency for each operation. Thus, this module is able to pro-
vide at least runtime checking for physical dimensions. For quantities you may choose
between strict and non-strict unit checks. Strict type checking means that this instance
raises an error whenever unequal units are compared. If strict checking is disabled this
instance tries to convert among the units. An error will only be raised, if the units
are not compatible (i.e. describe a different physical dimension). For example if you
want to add a quantity measured in feet to a quantity measured in meters. If Strict type
checking is enabled an error is raised. Otherwise the quantity measured in feet will be
transformed to meters before being added. Strict type checking is enabled by default.
In this class we use comparable for the case that the units can be converted to each
other and no strict checking is used or for strict type checking and equal units.

See also:

Quantity (p. 184)

Author:

Thomas Reidemeister

See also:

Quantity.set_strict (p. 210)
Quantity.is_strict (p. 210)

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

2.6 The Standard System of Units Module 10

Classes

• class Quantity
Base class that provides an interface to model quantities.

Functions

• def is_strict
An abbreviation for Quantity.is_strict (p. 210).

• def set_strict
An abbreviation for Quantity.set_strict (p. 210).

2.5.2 Function Documentation

2.5.2.1 def scuq::quantities::is_strict ()

An abbreviation for Quantity.is_strict (p. 210).

2.5.2.2 def scuq::quantities::set_strict (bValue = True)

An abbreviation for Quantity.set_strict (p. 210).

Parameters:

bValue

2.6 The Standard System of Units Module

2.6.1 Detailed Description

This module contains the predefined SI units. It models SI base units and SI alternate
units. The alternate units have been formed as product other alternate SI units where
possible as described in NIST 330.

See also:

"The International System of Units"; Barry N. Taylor; NIST 330 (2001)

Author:

Thomas Reidemeister

Classes

• class SIModel
The interface for a physical model for SI units.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

2.6 The Standard System of Units Module 11

Variables

• tuple __model = SIModel()
• tuple AMPERE = units.BaseUnit("A")

Unit instance to model the BaseUnit Ampere.

• tuple BECQUEREL = units.AlternateUnit("Bq", ∼SECOND)
Unit instance to model the SI unit Becquerel.

• tuple CANDELA = units.BaseUnit("cd")
Unit instance to model the BaseUnit Candela.

• float CELSIUS = 273.15
Unit instance to model the SI unit degree Celsius.

• tuple COULOMB = units.AlternateUnit("C", AMPERE ∗ SECOND)
Unit instance to model the SI unit Coulomb.

• tuple FARAD = units.AlternateUnit("F", COULOMB / VOLT)
Unit instance to model the SI unit Farad.

• tuple GRAY = units.AlternateUnit("Gy", JOULE/KILOGRAM)
Unit instance to model the SI unit Gray.

• tuple HENRY = units.AlternateUnit("H", WEBER / AMPERE)
Unit instance to model the SI unit Henry.

• tuple HERTZ = units.AlternateUnit("Hz", ∼SECOND)
Unit instance to model the SI unit Herz.

• tuple JOULE = units.AlternateUnit("J", NEWTON ∗ METER)
Unit instance to model the SI unit Joule.

• tuple KATAL = units.AlternateUnit("kat", MOLE/SECOND)
Unit instance to model the SI unit Katal.

• tuple KELVIN = units.BaseUnit("K")
Unit instance to model the BaseUnit Kelvin.

• tuple KILOGRAM = units.BaseUnit("kg")
Unit instance to model the BaseUnit Kilogram.

• tuple LUMEN = units.AlternateUnit("lm", CANDELA∗STERADIAN)
Unit instance to model the SI unit Lumen.

• tuple LUX = units.AlternateUnit("lx", LUMEN/(METER∗METER))

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

2.6 The Standard System of Units Module 12

Unit instance to model the SI unit Lux.

• tuple METER = units.BaseUnit("m")
Unit instance to model the BaseUnit Meter.

• tuple MOLE = units.BaseUnit("mol")
Unit instance to model the BaseUnit Mol.

• tuple NEWTON = units.AlternateUnit("N", KILOGRAM ∗ METER/(SEC-
OND ∗∗ 2))

Unit instance to model the SI unit Newton.

• tuple OHM
• tuple PASCAL = units.AlternateUnit("Pa", NEWTON / (METER ∗∗ 2))

Unit instance to model the SI unit Pascal.

• tuple RADIAN = units.AlternateUnit("rad", units.ONE)
• tuple SECOND = units.BaseUnit("s")

Unit instance to model the BaseUnit Second.

• tuple SIEMENS = units.AlternateUnit("S", AMPERE / VOLT)
Unit instance to model the SI unit Siemens.

• tuple SIVERT = units.AlternateUnit("Sv", JOULE/KILOGRAM)
Unit instance to model the SI unit Sivert.

• tuple STERADIAN = units.AlternateUnit("sr", units.ONE)
• tuple TESLA = units.AlternateUnit("T", WEBER / (METER∗∗2))

Unit instance to model the SI unit Tesla.

• tuple VOLT = units.AlternateUnit("V", WATT / AMPERE)
Unit instance to model the SI unit Volt.

• tuple WATT = units.AlternateUnit("W", JOULE / SECOND)
Unit instance to model the SI unit Watt.

• tuple WEBER = units.AlternateUnit("Wb", VOLT ∗ SECOND)
Unit instance to model the SI unit Weber.

2.6.2 Variable Documentation

2.6.2.1 tuple __model = SIModel() [static]

2.6.2.2 tuple AMPERE = units.BaseUnit("A") [static]

Unit instance to model the BaseUnit Ampere.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

2.6 The Standard System of Units Module 13

2.6.2.3 tuple BECQUEREL = units.AlternateUnit("Bq", ∼SECOND)
[static]

Unit instance to model the SI unit Becquerel.

2.6.2.4 tuple CANDELA = units.BaseUnit("cd") [static]

Unit instance to model the BaseUnit Candela.

2.6.2.5 float CELSIUS = 273.15 [static]

Unit instance to model the SI unit degree Celsius.

2.6.2.6 tuple COULOMB = units.AlternateUnit("C", AMPERE ∗ SECOND)
[static]

Unit instance to model the SI unit Coulomb.

2.6.2.7 tuple FARAD = units.AlternateUnit("F", COULOMB / VOLT)
[static]

Unit instance to model the SI unit Farad.

2.6.2.8 tuple GRAY = units.AlternateUnit("Gy", JOULE/KILOGRAM)
[static]

Unit instance to model the SI unit Gray.

2.6.2.9 tuple HENRY = units.AlternateUnit("H", WEBER / AMPERE)
[static]

Unit instance to model the SI unit Henry.

2.6.2.10 tuple HERTZ = units.AlternateUnit("Hz", ∼SECOND) [static]

Unit instance to model the SI unit Herz.

2.6.2.11 tuple JOULE = units.AlternateUnit("J", NEWTON ∗ METER)
[static]

Unit instance to model the SI unit Joule.

2.6.2.12 tuple KATAL = units.AlternateUnit("kat", MOLE/SECOND)
[static]

Unit instance to model the SI unit Katal.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

2.6 The Standard System of Units Module 14

2.6.2.13 tuple KELVIN = units.BaseUnit("K") [static]

Unit instance to model the BaseUnit Kelvin.

2.6.2.14 tuple KILOGRAM = units.BaseUnit("kg") [static]

Unit instance to model the BaseUnit Kilogram.

2.6.2.15 tuple LUMEN = units.AlternateUnit("lm", CANDELA∗STERADIAN
) [static]

Unit instance to model the SI unit Lumen.

2.6.2.16 tuple LUX = units.AlternateUnit("lx", LUMEN/(METER∗METER)
) [static]

Unit instance to model the SI unit Lux.

2.6.2.17 tuple METER = units.BaseUnit("m") [static]

Unit instance to model the BaseUnit Meter.

2.6.2.18 tuple MOLE = units.BaseUnit("mol") [static]

Unit instance to model the BaseUnit Mol.

2.6.2.19 tuple NEWTON = units.AlternateUnit("N", KILOGRAM ∗ METER/(
SECOND ∗∗ 2)) [static]

Unit instance to model the SI unit Newton.

2.6.2.20 tuple OHM [static]

Initial value:

units.AlternateUnit((u"\u03A9").encode("UTF-8"),
VOLT / AMPERE)

Unit instance to model the SI unit Ohm.

Note:

The UTF-8 encoded string stands for Ω.

2.6.2.21 tuple PASCAL = units.AlternateUnit("Pa", NEWTON / (METER ∗∗
2)) [static]

Unit instance to model the SI unit Pascal.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

2.6 The Standard System of Units Module 15

2.6.2.22 tuple RADIAN = units.AlternateUnit("rad", units.ONE) [static]

Unit instance to model the SI unit Radian.

Attention:

Because this library keeps only the canonical form of the product of base units the
Radian is compatible to the neutral 1. Therefore its system unit is modelled as "1"
not as m

m .

2.6.2.23 tuple SECOND = units.BaseUnit("s") [static]

Unit instance to model the BaseUnit Second.

2.6.2.24 tuple SIEMENS = units.AlternateUnit("S", AMPERE / VOLT)
[static]

Unit instance to model the SI unit Siemens.

2.6.2.25 tuple SIVERT = units.AlternateUnit("Sv", JOULE/KILOGRAM)
[static]

Unit instance to model the SI unit Sivert.

2.6.2.26 tuple STERADIAN = units.AlternateUnit("sr", units.ONE)
[static]

Unit instance to model the SI base unit Steradian.

Attention:

Because this library keeps only the canonical form of the product of base units the
Radian is compatible to the neutral 1. Therefore its system unit is modelled as "1"
not as m2

m2 .

2.6.2.27 tuple TESLA = units.AlternateUnit("T", WEBER / (METER∗∗2))
[static]

Unit instance to model the SI unit Tesla.

2.6.2.28 tuple VOLT = units.AlternateUnit("V", WATT / AMPERE)
[static]

Unit instance to model the SI unit Volt.

2.6.2.29 tuple WATT = units.AlternateUnit("W", JOULE / SECOND)
[static]

Unit instance to model the SI unit Watt.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

2.7 Testcases to verify the Quantitites library. 16

2.6.2.30 tuple WEBER = units.AlternateUnit("Wb", VOLT ∗ SECOND)
[static]

Unit instance to model the SI unit Weber.

2.7 Testcases to verify the Quantitites library.

2.7.1 Detailed Description

This module contains a variety of test cases that verify this library.

Author:

Thomas Reidemeister

Classes

• class TestArithmetic
This class provides the tests to verify the rational number module.

• class TestComplexUncertaintyComponents
This class provides test-cases for the Module cucomponents.

• class TestGUMTree
These classes test the function of the global elements of the GUM-tree, namely the
Context class.

• class TestOperators
Test the unit conversion operators.

• class TestQuantity
This class provides the test cases for the quantities.

• class TestSIUnits
SI Testing class. This class tests the definition and semantics of the SI units.

• class TestUncertaintyComponents
This class provides tests for the ucomponents module.

Functions

• def test_serialization
A general test for serialization of instances.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

2.8 The Uncertainty Module 17

Variables

• tuple suite = unittest.TestSuite()

2.7.2 Function Documentation

2.7.2.1 def scuq::testcases::test_serialization (instance, copy, sanityInstance,
type, bCopy = True)

A general test for serialization of instances.

Attention:

This test is only based on the __eq__ method of the instance. It is assumed that
this method is working correctly.

Parameters:

instance The instance to serialize.

copy A copy of the instance (having other object reference).

sanityInstance An instance that is not equal to the instance.

type The type of the instance and the copy.

bCopy Use the above parameter copy (True,default), or apply only a weak check
using no copy.

2.7.3 Variable Documentation

2.7.3.1 tuple suite = unittest.TestSuite() [static]

2.8 The Uncertainty Module

2.8.1 Detailed Description

This module contains classes to model uncertain values.

Author:

Thomas Reidemeister

Classes

• class Abs
This class models the GUM-tree-nodes that take the absolute value of a silbling.

• class Add
This class models GUM-tree nodes that add two silblings.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

2.8 The Uncertainty Module 18

• class ArcCos
This class models the GUM-tree-nodes that take the Arcus Cosine of a silbling.

• class ArcCosh
This class models the GUM-tree-nodes that take the inverse Hyperbolic Cosine.

• class ArcSin
This class models the GUM-tree-nodes that take the Arc Sine of a silbling.

• class ArcSinh
This class models the GUM-tree-nodes that take the inverse Hyperbolic Sine of a
silbling.

• class ArcTan
This class models the GUM-tree-nodes that take the Arcus Tangent of a silbling.

• class ArcTan2
This class models the inverse two-argument tangent.

• class ArcTanh
This class models the GUM-tree-nodes that take the inverse Hyperbolic Tangent of a
silbling.

• class BinaryOperation
The abstract base class for modelling binary operations. This class provides the
abstract interface for GUM-tree-nodes that have two silblings.

• class Context
This class provides the context for an uncertainty evaluation. It maintains the cor-
relation between the inputs and can be used to evaluate the combined standard
uncertainty, as shown below. Let your model be y = f(x1, x2, . . . , xN), then
u2

c(y) =
∑N

i=1

(
δf
δxi

)2
u2(xi) + 2

∑N

i=1

∑N

j=i+1
δf
δxi

δf
δxj

u(xi, xj).

• class Cos
This class models the GUM-tree-nodes that take the Cosine of a silbling.

• class Cosh
This class models the GUM-tree-nodes that take the Hyperbolic Cosine of a silbling.

• class Div
This class models GUM-tree nodes that divide two silblings.

• class Exp
This class models the GUM-tree-nodes that take the exponential of a silbling.

• class Log
This class models the GUM-tree-nodes that take the Natural Logarithm of a silbling.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

2.8 The Uncertainty Module 19

• class Mul
This class models GUM-tree nodes that multiply two silblings.

• class Neg
This class models the unary negation as GUM-tree-element.

• class Pow
This class models GUM-tree nodes that raise the left silbling to the power of the right
one.

• class Sin
This class models the GUM-tree-nodes that take the Sine of a silbling.

• class Sinh
This class models the GUM-tree-nodes that take the Hyperbolic Sine of a silbling.

• class Sqrt
This class models the GUM-tree-nodes that take the square root of a silbling.

• class Sub
This class models GUM-tree nodes that take the difference of the two silblings.

• class Tan
This class models the GUM-tree-nodes that take the Tangent of a silbling.

• class Tanh
This class models the GUM-tree-nodes that take the Hyperbolic Tangent of a silbling.

• class UnaryOperation
The abstract base class for modelling unary operations. This class provides the ab-
stract interface for GUM-tree-nodes that have one silbling.

• class UncertainComponent
This is the abstract base class to model components of uncertainty as described in by
"The GUM Tree".

• class UncertainInput
This class provides the model for uncertain inputs, that are referred to as "Leafs" in
"The GUM tree".

Functions

• def clearDuplicates
Remove identical elements from a list.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

2.9 Units Module 20

2.8.2 Function Documentation

2.8.2.1 def scuq::ucomponents::clearDuplicates (alist)

Remove identical elements from a list.

Parameters:

alist A list that may contain identical elements.

Returns:

A list that only contains unique elements.

2.9 Units Module

2.9.1 Detailed Description

This module contains the classes necessary to define, handle, and work with physical
units and dimensions.

Author:

Thomas Reidemeister

Classes

• class __ProductElement__
A helper class for ProductUnit (p. 176) classes. This class helps to maintain the
factors of a product unit.

• class AlternateUnit
This class provides an interface for units that describe the same dimension as another
unit, but need to be distinguished from it by another symbol (e.g. to abbreviate them,
or to distinguish their purpose).

• class BaseUnit
This class provides the interface to define and use base units.

• class CompoundUnit
This class provides an interface for describing compound units. The units forming
a compound unit have to describe the same physical dimension. For example time
[hour : min : second].

• class DerivedUnit
This class provides an abstract interface for all units that have been transformed from
other units.

• class Dimension
This class provides an interface to model physical dimensions.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

2.9 Units Module 21

• class PhysicalModel
This class models the abstract interface for physical models.

• class ProductUnit
The unit is a combined unit of the product of the powers of units.

• class TransformedUnit
This class provides an interface for a unit that has been derived from a unit using an
operator.

• class Unit
An abstract class to model physical units.

• class UnitsManager
This manages the alternate and base units as well as the physical dimensions.

Functions

• def get_default_model
Get the physical model currently in use. This function returns None, if no model is
currently in use.

• def set_default_model
Set the default physical model to use.

Variables

• tuple __char = __unicode.encode("UTF-8")
• string __unicode = u"\u03b8"
• tuple __UNITS_MANAGER__ = UnitsManager()

Global units Manager that keeps track of the units and dimensions created.

• tuple CURRENT = Dimension("I")
Predefined global dimension for the Electric Current.

• tuple LENGTH = Dimension("L")
Predefined global dimension for the Length.

• tuple LUMINOUS_INTENSITY = Dimension("Li")
Predefined global dimension for Luminous Intensity.

• tuple MASS = Dimension("M")
Predefined global dimension for the Mass.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

2.9 Units Module 22

• tuple NONE = Dimension(ONE)
Predefined global dimension for a dimensionless quantity.

• tuple ONE = ProductUnit()
Dimensionless unit ONE.

• tuple SUBSTANCE = Dimension("n")
Predefined global dimension for the Amount of Substance.

• tuple TEMPERATURE = Dimension(__char)
Predefined global dimension for the Temperature.

• tuple TIME = Dimension("t")
Predefined global dimension for the Time.

2.9.2 Function Documentation

2.9.2.1 def scuq::units::get_default_model ()

Get the physical model currently in use. This function returns None, if no model is
currently in use.

Returns:

The physical model that is currently in use.

See also:

PhysicalModel (p. 172).

2.9.2.2 def scuq::units::set_default_model (physicalModel)

Set the default physical model to use.

Parameters:

physicalModel The physical model to use.

See also:

PhysicalModel (p. 172).

2.9.3 Variable Documentation

2.9.3.1 tuple __char = __unicode.encode("UTF-8") [static]

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

2.9 Units Module 23

2.9.3.2 string __unicode = u"\u03b8" [static]

2.9.3.3 tuple __UNITS_MANAGER__ = UnitsManager() [static]

Global units Manager that keeps track of the units and dimensions created.

2.9.3.4 tuple CURRENT = Dimension("I") [static]

Predefined global dimension for the Electric Current.

2.9.3.5 tuple LENGTH = Dimension("L") [static]

Predefined global dimension for the Length.

2.9.3.6 tuple LUMINOUS_INTENSITY = Dimension("Li") [static]

Predefined global dimension for Luminous Intensity.

2.9.3.7 tuple MASS = Dimension("M") [static]

Predefined global dimension for the Mass.

2.9.3.8 tuple NONE = Dimension(ONE) [static]

Predefined global dimension for a dimensionless quantity.

2.9.3.9 tuple ONE = ProductUnit() [static]

Dimensionless unit ONE.

2.9.3.10 tuple SUBSTANCE = Dimension("n") [static]

Predefined global dimension for the Amount of Substance.

2.9.3.11 tuple TEMPERATURE = Dimension(__char) [static]

Predefined global dimension for the Temperature.

2.9.3.12 tuple TIME = Dimension("t") [static]

Predefined global dimension for the Time.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

3 SCUQ Namespace Documentation 24

3 SCUQ Namespace Documentation

3.1 scuq Namespace Reference

3.1.1 Detailed Description

The namespace containing this library.

Namespaces

• namespace __init__
This namespace does only contain variables for global initialization.

• namespace arithmetic
This namespace contains several functions and classes that are used for numeric com-
putations within this class library.

• namespace cucomponents
This namespace contains the classes to evaluate the uncertainty of complex-valued
functions.

• namespace operators
This namespace contains operators that are used for unit conversions.

• namespace qexceptions
This namespace contains classes defining custom exceptions of this library.

• namespace quantities
This namespace contains the class Quantity (p. 184) that models physical quantities.

• namespace si
This namespace contains the SI-units.

• namespace testcases
This namespace contains several test cases to validate and verify this class library.

• namespace ucomponents
This namespace contains the classes to evaluate the uncertainty of scalar functions.

• namespace units
This namespace contains the classes and constants to model units.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

3.2 scuq::__init__ Namespace Reference 25

3.2 scuq::__init__ Namespace Reference

3.2.1 Detailed Description

This namespace does only contain variables for global initialization.

Variables

• list __all__ = ["arithmetic", "units", "qexceptions", "si", "quantities", "opera-
tors", "ucomponents", "cucomponents"]

The modules contained within the quantities package.

3.2.2 Variable Documentation

3.2.2.1 list __all__ = ["arithmetic", "units", "qexceptions", "si", "quantities",
"operators", "ucomponents", "cucomponents"] [static]

The modules contained within the quantities package.

3.3 scuq::arithmetic Namespace Reference

3.3.1 Detailed Description

This namespace contains several functions and classes that are used for numeric com-
putations within this class library.

Classes

• class RationalNumber
This class provides support for rational numbers.

Functions

• def complex_to_matrix
This function converts a complex number to a column vector.

• def gcd
Calculate the greatest common divisor.

• def rational
This function provides an interface for rational numbers creation, as suggested in
PEP 239.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

3.4 scuq::cucomponents Namespace Reference 26

Variables

• string INFINITY = "inf"
Global constant for infinity that is used in combination with the degrees of freedom
evaluation.

3.4 scuq::cucomponents Namespace Reference

3.4.1 Detailed Description

This namespace contains the classes to evaluate the uncertainty of complex-valued
functions.

Classes

• class Abs
This class models taking the absolute value of a complex function.

• class Add
This class models adding two complex values.

• class ArcCos
This class models the inverse cosine function.

• class ArcCosh
This class models the inverse hyperbolic cosine function.

• class ArcSin
This class models the inverse sine function.

• class ArcSinh
This class models the inverse hyperbolic sine function.

• class ArcTan
This class models the inverse tangent function.

• class ArcTan2
This class models two-argument inverse tangent.

• class ArcTanh
This class models the inverse hyperbolic tangent function.

• class CBinaryOperation
This abstract class models a binary operation.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

3.4 scuq::cucomponents Namespace Reference 27

• class Conjugate
This class models taking the negative of a complex value.

• class Context
This class provides a context for complex-valued uncertainty evaluations. It manages
the correlation coefficients and is able to evaluate the effective degrees of freedom.

• class Cos
This class models the cosine function.

• class Cosh
This class models the hyperbolic cosine function.

• class CUnaryOperation
This abstract class models an unary operation.

• class CUncertainComponent
This is the abstract super class of all complex valued uncertain components. Despite
defining the interface for complex valued uncertain components, it also provides a set
of factory methods that act as an interface for numpy.

• class CUncertainInput
This class models a complex-valued input of a function.

• class Div
This class models dividing two complex values.

• class Exp
This class models the exponential function ex. x denotes the sibling of this instance.

• class Inv
This class models inverting complex values. Let an instance of this class model the
complex value x then this class models 1

x
.

• class Log
This class models logarithms having a real base. However, the base cannot be uncer-
tain.

• class Mul
This class models multiplying two complex values.

• class Neg
This class models taking the negative of a complex value.

• class Pow
This class models complex powers.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

3.5 scuq::operators Namespace Reference 28

• class Sin
This class models the sine function.

• class Sinh
This class models the hyperbolic sine function.

• class Sqrt
This class models taking the square root of an uncertain component.

• class Sub
This class models taking the difference of two complex values.

• class Tan
This class models the tangent function.

• class Tanh
This class models the hyperbolic tangent function.

Functions

• def complex_to_matrix
This function transforms a complex value into a matrix.

3.5 scuq::operators Namespace Reference

3.5.1 Detailed Description

This namespace contains operators that are used for unit conversions.

Classes

• class __ExpOperator__
This class provides an Interface for exponential operators. It is used as helper for the
LogOperator (p. 156).

• class AddOperator
This class provides an Interface for offset operators.

• class CompoundOperator
Compound Operator.

• class Identity
This class provides an Interface for the identity Operator.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

3.6 scuq::qexceptions Namespace Reference 29

• class LogOperator
This class provides an interface for logarithmic operators.

• class MultiplyOperator
This class provides an Interface for factor operators.

• class UnitOperator
Basic abstract Operator to use on units.

Variables

• tuple IDENTITY = Identity()

3.6 scuq::qexceptions Namespace Reference

3.6.1 Detailed Description

This namespace contains classes defining custom exceptions of this library.

Classes

• class ConversionException
General exception that is raised whenever a unit conversion fails.

• class NotDimensionlessException
Exception that is raised whenever a a unit is not dimensionless where it has to be.

• class QuantitiesException
General class for qexceptions of this module.

• class UnitExistsException
Exception that is raised when a dimension, base unit, or alternate unit of the same
type has already been created.

• class UnknownUnitException
An exception that is raised whenever an unexpected unit was used.

3.7 scuq::quantities Namespace Reference

3.7.1 Detailed Description

This namespace contains the class Quantity (p. 184) that models physical quantities.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

3.8 scuq::si Namespace Reference 30

Classes

• class Quantity
Base class that provides an interface to model quantities.

Functions

• def is_strict
An abbreviation for Quantity.is_strict (p. 210).

• def set_strict
An abbreviation for Quantity.set_strict (p. 210).

3.8 scuq::si Namespace Reference

3.8.1 Detailed Description

This namespace contains the SI-units.

Classes

• class SIModel
The interface for a physical model for SI units.

Variables

• tuple __model = SIModel()
• tuple AMPERE = units.BaseUnit("A")

Unit instance to model the BaseUnit Ampere.

• tuple BECQUEREL = units.AlternateUnit("Bq", ∼SECOND)
Unit instance to model the SI unit Becquerel.

• tuple CANDELA = units.BaseUnit("cd")
Unit instance to model the BaseUnit Candela.

• float CELSIUS = 273.15
Unit instance to model the SI unit degree Celsius.

• tuple COULOMB = units.AlternateUnit("C", AMPERE ∗ SECOND)
Unit instance to model the SI unit Coulomb.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

3.8 scuq::si Namespace Reference 31

• tuple FARAD = units.AlternateUnit("F", COULOMB / VOLT)
Unit instance to model the SI unit Farad.

• tuple GRAY = units.AlternateUnit("Gy", JOULE/KILOGRAM)
Unit instance to model the SI unit Gray.

• tuple HENRY = units.AlternateUnit("H", WEBER / AMPERE)
Unit instance to model the SI unit Henry.

• tuple HERTZ = units.AlternateUnit("Hz", ∼SECOND)
Unit instance to model the SI unit Herz.

• tuple JOULE = units.AlternateUnit("J", NEWTON ∗ METER)
Unit instance to model the SI unit Joule.

• tuple KATAL = units.AlternateUnit("kat", MOLE/SECOND)
Unit instance to model the SI unit Katal.

• tuple KELVIN = units.BaseUnit("K")
Unit instance to model the BaseUnit Kelvin.

• tuple KILOGRAM = units.BaseUnit("kg")
Unit instance to model the BaseUnit Kilogram.

• tuple LUMEN = units.AlternateUnit("lm", CANDELA∗STERADIAN)
Unit instance to model the SI unit Lumen.

• tuple LUX = units.AlternateUnit("lx", LUMEN/(METER∗METER))
Unit instance to model the SI unit Lux.

• tuple METER = units.BaseUnit("m")
Unit instance to model the BaseUnit Meter.

• tuple MOLE = units.BaseUnit("mol")
Unit instance to model the BaseUnit Mol.

• tuple NEWTON = units.AlternateUnit("N", KILOGRAM ∗ METER/(SEC-
OND ∗∗ 2))

Unit instance to model the SI unit Newton.

• tuple OHM
• tuple PASCAL = units.AlternateUnit("Pa", NEWTON / (METER ∗∗ 2))

Unit instance to model the SI unit Pascal.

• tuple RADIAN = units.AlternateUnit("rad", units.ONE)
• tuple SECOND = units.BaseUnit("s")

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

3.9 scuq::testcases Namespace Reference 32

Unit instance to model the BaseUnit Second.

• tuple SIEMENS = units.AlternateUnit("S", AMPERE / VOLT)
Unit instance to model the SI unit Siemens.

• tuple SIVERT = units.AlternateUnit("Sv", JOULE/KILOGRAM)
Unit instance to model the SI unit Sivert.

• tuple STERADIAN = units.AlternateUnit("sr", units.ONE)
• tuple TESLA = units.AlternateUnit("T", WEBER / (METER∗∗2))

Unit instance to model the SI unit Tesla.

• tuple VOLT = units.AlternateUnit("V", WATT / AMPERE)
Unit instance to model the SI unit Volt.

• tuple WATT = units.AlternateUnit("W", JOULE / SECOND)
Unit instance to model the SI unit Watt.

• tuple WEBER = units.AlternateUnit("Wb", VOLT ∗ SECOND)
Unit instance to model the SI unit Weber.

3.9 scuq::testcases Namespace Reference

3.9.1 Detailed Description

This namespace contains several test cases to validate and verify this class library.

Classes

• class TestArithmetic
This class provides the tests to verify the rational number module.

• class TestComplexUncertaintyComponents
This class provides test-cases for the Module cucomponents.

• class TestGUMTree
These classes test the function of the global elements of the GUM-tree, namely the
Context class.

• class TestOperators
Test the unit conversion operators.

• class TestQuantity
This class provides the test cases for the quantities.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

3.10 scuq::ucomponents Namespace Reference 33

• class TestSIUnits
SI Testing class. This class tests the definition and semantics of the SI units.

• class TestUncertaintyComponents
This class provides tests for the ucomponents module.

Functions

• def test_serialization
A general test for serialization of instances.

Variables

• tuple suite = unittest.TestSuite()

3.10 scuq::ucomponents Namespace Reference

3.10.1 Detailed Description

This namespace contains the classes to evaluate the uncertainty of scalar functions.

Classes

• class Abs
This class models the GUM-tree-nodes that take the absolute value of a silbling.

• class Add
This class models GUM-tree nodes that add two silblings.

• class ArcCos
This class models the GUM-tree-nodes that take the Arcus Cosine of a silbling.

• class ArcCosh
This class models the GUM-tree-nodes that take the inverse Hyperbolic Cosine.

• class ArcSin
This class models the GUM-tree-nodes that take the Arc Sine of a silbling.

• class ArcSinh
This class models the GUM-tree-nodes that take the inverse Hyperbolic Sine of a
silbling.

• class ArcTan

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

3.10 scuq::ucomponents Namespace Reference 34

This class models the GUM-tree-nodes that take the Arcus Tangent of a silbling.

• class ArcTan2
This class models the inverse two-argument tangent.

• class ArcTanh
This class models the GUM-tree-nodes that take the inverse Hyperbolic Tangent of a
silbling.

• class BinaryOperation
The abstract base class for modelling binary operations. This class provides the
abstract interface for GUM-tree-nodes that have two silblings.

• class Context
This class provides the context for an uncertainty evaluation. It maintains the cor-
relation between the inputs and can be used to evaluate the combined standard
uncertainty, as shown below. Let your model be y = f(x1, x2, . . . , xN), then
u2

c(y) =
∑N

i=1

(
δf
δxi

)2
u2(xi) + 2

∑N

i=1

∑N

j=i+1
δf
δxi

δf
δxj

u(xi, xj).

• class Cos
This class models the GUM-tree-nodes that take the Cosine of a silbling.

• class Cosh
This class models the GUM-tree-nodes that take the Hyperbolic Cosine of a silbling.

• class Div
This class models GUM-tree nodes that divide two silblings.

• class Exp
This class models the GUM-tree-nodes that take the exponential of a silbling.

• class Log
This class models the GUM-tree-nodes that take the Natural Logarithm of a silbling.

• class Mul
This class models GUM-tree nodes that multiply two silblings.

• class Neg
This class models the unary negation as GUM-tree-element.

• class Pow
This class models GUM-tree nodes that raise the left silbling to the power of the right
one.

• class Sin
This class models the GUM-tree-nodes that take the Sine of a silbling.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

3.11 scuq::units Namespace Reference 35

• class Sinh
This class models the GUM-tree-nodes that take the Hyperbolic Sine of a silbling.

• class Sqrt
This class models the GUM-tree-nodes that take the square root of a silbling.

• class Sub
This class models GUM-tree nodes that take the difference of the two silblings.

• class Tan
This class models the GUM-tree-nodes that take the Tangent of a silbling.

• class Tanh
This class models the GUM-tree-nodes that take the Hyperbolic Tangent of a silbling.

• class UnaryOperation
The abstract base class for modelling unary operations. This class provides the ab-
stract interface for GUM-tree-nodes that have one silbling.

• class UncertainComponent
This is the abstract base class to model components of uncertainty as described in by
"The GUM Tree".

• class UncertainInput
This class provides the model for uncertain inputs, that are referred to as "Leafs" in
"The GUM tree".

Functions

• def clearDuplicates
Remove identical elements from a list.

3.11 scuq::units Namespace Reference

3.11.1 Detailed Description

This namespace contains the classes and constants to model units.

Classes

• class __ProductElement__
A helper class for ProductUnit (p. 176) classes. This class helps to maintain the
factors of a product unit.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

3.11 scuq::units Namespace Reference 36

• class AlternateUnit
This class provides an interface for units that describe the same dimension as another
unit, but need to be distinguished from it by another symbol (e.g. to abbreviate them,
or to distinguish their purpose).

• class BaseUnit
This class provides the interface to define and use base units.

• class CompoundUnit
This class provides an interface for describing compound units. The units forming
a compound unit have to describe the same physical dimension. For example time
[hour : min : second].

• class DerivedUnit
This class provides an abstract interface for all units that have been transformed from
other units.

• class Dimension
This class provides an interface to model physical dimensions.

• class PhysicalModel
This class models the abstract interface for physical models.

• class ProductUnit
The unit is a combined unit of the product of the powers of units.

• class TransformedUnit
This class provides an interface for a unit that has been derived from a unit using an
operator.

• class Unit
An abstract class to model physical units.

• class UnitsManager
This manages the alternate and base units as well as the physical dimensions.

Functions

• def get_default_model
Get the physical model currently in use. This function returns None, if no model is
currently in use.

• def set_default_model
Set the default physical model to use.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4 SCUQ Class Documentation 37

Variables

• tuple __char = __unicode.encode("UTF-8")
• string __unicode = u"\u03b8"
• tuple __UNITS_MANAGER__ = UnitsManager()

Global units Manager that keeps track of the units and dimensions created.

• tuple CURRENT = Dimension("I")
Predefined global dimension for the Electric Current.

• tuple LENGTH = Dimension("L")
Predefined global dimension for the Length.

• tuple LUMINOUS_INTENSITY = Dimension("Li")
Predefined global dimension for Luminous Intensity.

• tuple MASS = Dimension("M")
Predefined global dimension for the Mass.

• tuple NONE = Dimension(ONE)
Predefined global dimension for a dimensionless quantity.

• tuple ONE = ProductUnit()
Dimensionless unit ONE.

• tuple SUBSTANCE = Dimension("n")
Predefined global dimension for the Amount of Substance.

• tuple TEMPERATURE = Dimension(__char)
Predefined global dimension for the Temperature.

• tuple TIME = Dimension("t")
Predefined global dimension for the Time.

4 SCUQ Class Documentation

4.1 __ExpOperator__ Class Reference

Inheritance diagram for __ExpOperator__::

__ExpOperator__

UnitOperator

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.1 __ExpOperator__ Class Reference 38

4.1.1 Detailed Description

This class provides an Interface for exponential operators. It is used as helper for the
LogOperator (p. 156).

Note:

Instances of this class can be serialized using pickle.

Public Member Functions

• def __eq__
Test for equality.

• def __getstate__
Serialization using pickle.

• def __init__
Default constructor.

• def __invert__
Invert this operation.

• def __setstate__
Deserialization using pickle.

• def __str__
Represent this operation by a string.

• def convert
Convert a value.

• def get_exponent
Get the base of logarithm.

• def is_linear
Check if the operator is linear.

Private Attributes

• __exponent__
• __logExponent__

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.1 __ExpOperator__ Class Reference 39

4.1.2 Member Function Documentation

4.1.2.1 def __eq__ (self, other)

Test for equality.

Parameters:

self
other Another UnitOperator (p. 326).

Reimplemented from UnitOperator (p. 327).

4.1.2.2 def __getstate__ (self)

Serialization using pickle.

Parameters:

self

Returns:

A string that represents the serialized form of this instance.

Reimplemented from UnitOperator (p. 327).

4.1.2.3 def __init__ (self, exponent)

Default constructor.

Initializes the operator and assigns the base to the current operator.

Parameters:

self
exponent the exponent.

4.1.2.4 def __invert__ (self)

Invert this operation.

This method returns the inverse operation of the current operation.

Parameters:

self

Returns:

The inverse operation of the current operation.

Reimplemented from UnitOperator (p. 327).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.1 __ExpOperator__ Class Reference 40

4.1.2.5 def __setstate__ (self, state)

Deserialization using pickle.

Parameters:

self
state The state of the object.

Reimplemented from UnitOperator (p. 328).

4.1.2.6 def __str__ (self)

Represent this operation by a string.

Parameters:

self

Returns:

A string describing this operation.

Reimplemented from UnitOperator (p. 328).

4.1.2.7 def convert (self, value)

Convert a value.

This method performs raises the current value to the exponent.

Parameters:

self
value The value to convert.

Returns:

The converted value

Reimplemented from UnitOperator (p. 329).

4.1.2.8 def get_exponent (self)

Get the base of logarithm.

This method returns the exponent.

Parameters:

self

Returns:

The base of the logarithm

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.2 __ProductElement__ Class Reference 41

4.1.2.9 def is_linear (self)

Check if the operator is linear.

This operator is not linear.

Parameters:

self

Returns:

False; this operator is not linear.

Reimplemented from UnitOperator (p. 329).

4.1.3 Member Data Documentation

4.1.3.1 __exponent__ [private]

4.1.3.2 __logExponent__ [private]

4.2 __ProductElement__ Class Reference

4.2.1 Detailed Description

A helper class for ProductUnit (p. 176) classes. This class helps to maintain the factors
of a product unit.

Note:

Instances of this class can be serialized using pickle.

Public Member Functions

• def __eq__
This method checks two factors for equality. Two factors are equal if they have the
same units, powers, and roots.

• def __getstate__
Serialization using pickle.

• def __init__
Default constructor.

• def __setstate__
Deserialization using pickle.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.2 __ProductElement__ Class Reference 42

• def __str__
Print this factor. This function returns a string of the form unit∧(pow/root).

• def clone
Return a new instance of this factor.

• def get_pow
Get the power of this factor.

• def get_root
Get the root of this factor.

• def get_unit
Get the unit of this factor.

• def normalize
Transform the current factor into its canonical form.

• def set_pow
This method changes the power.

• def set_root
This method changes the root.

Static Private Attributes

• __pow__ = None
The power of the current factor.

• __root__ = None
The root of the current factor.

• __unit__ = None
The unit of the current factor.

4.2.2 Member Function Documentation

4.2.2.1 def __eq__ (self, other)

This method checks two factors for equality. Two factors are equal if they have the
same units, powers, and roots.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.2 __ProductElement__ Class Reference 43

other Another instance of a factor.

Returns:

True, if the factors are equal.

4.2.2.2 def __getstate__ (self)

Serialization using pickle.

Parameters:

self

Returns:

A string that represents the serialized form of this instance.

4.2.2.3 def __init__ (self, unit, pow, root)

Default constructor.

Parameters:

self
unit The unit of the factor to create.

pow The power assigned to this factor.

root The root assigned to this factor.

4.2.2.4 def __setstate__ (self, state)

Deserialization using pickle.

Parameters:

self
state The state of the object.

4.2.2.5 def __str__ (self)

Print this factor. This function returns a string of the form unit∧(pow/root).

Parameters:

self

Returns:

A string describing this factor.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.2 __ProductElement__ Class Reference 44

4.2.2.6 def clone (self)

Return a new instance of this factor.

Parameters:

self

Returns:

A new instance of this factor.

4.2.2.7 def get_pow (self)

Get the power of this factor.

Parameters:

self

Returns:

The power of this factor.

4.2.2.8 def get_root (self)

Get the root of this factor.

Parameters:

self

Returns:

The root of this factor.

4.2.2.9 def get_unit (self)

Get the unit of this factor.

Parameters:

self

Returns:

The unit of this factor.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.3 Abs Class Reference 45

4.2.2.10 def normalize (self)

Transform the current factor into its canonical form.

Parameters:

self

4.2.2.11 def set_pow (self, value)

This method changes the power.

Parameters:

self
value An interget to be used as new power.

4.2.2.12 def set_root (self, value)

This method changes the root.

Parameters:

self
value An interger to be used as new root.

4.2.3 Member Data Documentation

4.2.3.1 __pow__ = None [static, private]

The power of the current factor.

4.2.3.2 __root__ = None [static, private]

The root of the current factor.

4.2.3.3 __unit__ = None [static, private]

The unit of the current factor.

4.3 Abs Class Reference

Inheritance diagram for Abs::

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.3 Abs Class Reference 46

Abs

CUnaryOperation

CUncertainComponent

4.3.1 Detailed Description

This class models taking the absolute value of a complex function.

Public Member Functions

• def get_uncertainty
Get the partial derivate of this component with respect to the given argument.

• def get_value
Get the value of this component.

4.3.2 Member Function Documentation

4.3.2.1 def get_uncertainty (self, x)

Get the partial derivate of this component with respect to the given argument.

Parameters:

self
x The argument of the partial derivation.

Returns:

The partial derivate.

Reimplemented from CUncertainComponent (p. 129).

4.3.2.2 def get_value (self)

Get the value of this component.

Parameters:

self

Returns:

The value of this component.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.4 Abs Class Reference 47

Reimplemented from CUncertainComponent (p. 129).

4.4 Abs Class Reference

Inheritance diagram for Abs::

Abs

UnaryOperation

UncertainComponent

4.4.1 Detailed Description

This class models the GUM-tree-nodes that take the absolute value of a silbling.

Public Member Functions

• def __init__
Default constructor.

• def equal_debug
A method that is only used for serialization checking.

• def get_uncertainty
Returns the uncertainty of this node. Let the node represent the operation y = |x|
then the resulting uncertainty is u(y) = |u(x)|.

• def get_value
Returns the exponential of the silbling.

4.4.2 Member Function Documentation

4.4.2.1 def __init__ (self, right)

Default constructor.

Parameters:

self
right Right silbling of this instance.

Reimplemented from UnaryOperation (p. 287).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.5 Add Class Reference 48

4.4.2.2 def equal_debug (self, other)

A method that is only used for serialization checking.

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the instance has the same attribute values as the argument

Reimplemented from UnaryOperation (p. 288).

4.4.2.3 def get_uncertainty (self, component)

Returns the uncertainty of this node. Let the node represent the operation y = |x| then
the resulting uncertainty is u(y) = |u(x)|.

Parameters:

self
component Another instance of uncertainty.

Returns:

A numeric value, representing the standard uncertainty.

Reimplemented from UncertainComponent (p. 304).

4.4.2.4 def get_value (self)

Returns the exponential of the silbling.

Parameters:

self

Returns:

A numeric value, representing the absolute value of the silbling.

Reimplemented from UncertainComponent (p. 305).

4.5 Add Class Reference

Inheritance diagram for Add::

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.5 Add Class Reference 49

Add

CBinaryOperation

CUncertainComponent

4.5.1 Detailed Description

This class models adding two complex values.

Public Member Functions

• def get_uncertainty
Get the partial derivate of this component with respect to the given argument.

• def get_value
Get the value of this component.

4.5.2 Member Function Documentation

4.5.2.1 def get_uncertainty (self, x)

Get the partial derivate of this component with respect to the given argument.

Parameters:

self
x The argument of the partial derivation.

Returns:

The partial derivate.

Reimplemented from CUncertainComponent (p. 129).

4.5.2.2 def get_value (self)

Get the value of this component.

Parameters:

self

Returns:

The value of this component.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.6 Add Class Reference 50

Reimplemented from CUncertainComponent (p. 129).

4.6 Add Class Reference

Inheritance diagram for Add::

Add

BinaryOperation

UncertainComponent

4.6.1 Detailed Description

This class models GUM-tree nodes that add two silblings.

Public Member Functions

• def __init__
Default constructor.

• def equal_debug
A method that is only used for serialization checking.

• def get_uncertainty
Returns the uncertainty of this node. Let the node represent the operation y = x1+x2

then the resulting uncertainty is u(y) = u(x1) + u(x2).

• def get_value
Returns the sum of the silblings assigned.

4.6.2 Member Function Documentation

4.6.2.1 def __init__ (self, left, right)

Default constructor.

Parameters:

self
left Left silbling of this instance.
right Right silbling of this instance.

Reimplemented from BinaryOperation (p. 89).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.7 AddOperator Class Reference 51

4.6.2.2 def equal_debug (self, other)

A method that is only used for serialization checking.

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the instance has the same attribute values as the argument

Reimplemented from BinaryOperation (p. 89).

4.6.2.3 def get_uncertainty (self, component)

Returns the uncertainty of this node. Let the node represent the operation y = x1 + x2

then the resulting uncertainty is u(y) = u(x1) + u(x2).

Parameters:

self
component Another instance of uncertainty.

Returns:

A numeric value, representing the standard uncertainty.

Reimplemented from UncertainComponent (p. 304).

4.6.2.4 def get_value (self)

Returns the sum of the silblings assigned.

Parameters:

self

Returns:

A numeric value, representing the sum of the silblings.

Reimplemented from UncertainComponent (p. 305).

4.7 AddOperator Class Reference

Inheritance diagram for AddOperator::

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.7 AddOperator Class Reference 52

AddOperator

UnitOperator

4.7.1 Detailed Description

This class provides an Interface for offset operators.

This class adds a constant value to an existing Operator.

Note:

Instances of this class can be serialized using pickle.

Public Member Functions

• def __eq__
Test for equality.

• def __getstate__
Serialization using pickle.

• def __init__
Default constructor.

• def __invert__
Invert the current operation.

• def __mul__
Perform the current operation on another operator.

• def __setstate__
Deserialization using pickle.

• def __str__
Represent this operation by a string.

• def convert
Convert a value.

• def get_offset
Get the offset.

• def is_linear
Check if this operator is linear.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.7 AddOperator Class Reference 53

Private Member Functions

• def __isNegative
Helper method to optimize comparsions.

Private Attributes

• __offset__

4.7.2 Member Function Documentation

4.7.2.1 def __eq__ (self, other)

Test for equality.

Parameters:

self
other Another UnitOperator (p. 326).

Reimplemented from UnitOperator (p. 327).

4.7.2.2 def __getstate__ (self)

Serialization using pickle.

Parameters:

self

Returns:

A string that represents the serialized form of this instance.

Reimplemented from UnitOperator (p. 327).

4.7.2.3 def __init__ (self, offset)

Default constructor.

Initializes the operator and assigns the offset to the current operator.

Parameters:

self
offset The offset of this operator.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.7 AddOperator Class Reference 54

4.7.2.4 def __invert__ (self)

Invert the current operation.

This method returns the inverse operation of the current operation.

Parameters:

self

Returns:

The inverse operation of this operation.

Reimplemented from UnitOperator (p. 327).

4.7.2.5 def __isNegative (positvieOp, negativeOp) [private]

Helper method to optimize comparsions.

Parameters:

negativeOp An AddOperator (p. 51).

positvieOp An AddOperator (p. 51).

Returns:

negativeOp.get_offset() == -positvieOp.get_offset()

4.7.2.6 def __mul__ (self, otherOperator)

Perform the current operation on another operator.

The current operation (adding an offset a) will be performed on another operator f(x).
So that the new Operator is a+ g(x). If the other Operator is an AddOperator (p. 51),
the offset is updated.

Parameters:

self
otherOperator The other operator to concat.

Returns:

The resulting operator.

Reimplemented from UnitOperator (p. 328).

4.7.2.7 def __setstate__ (self, state)

Deserialization using pickle.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.7 AddOperator Class Reference 55

Parameters:

self
state The state of the object.

Reimplemented from UnitOperator (p. 328).

4.7.2.8 def __str__ (self)

Represent this operation by a string.

Parameters:

self

Returns:

A string describing this operation.

Reimplemented from UnitOperator (p. 328).

4.7.2.9 def convert (self, value)

Convert a value.

This method performs the addition of an offset on an absolute value.

Parameters:

self
value The value to convert.

Returns:

The converted value

Reimplemented from UnitOperator (p. 329).

4.7.2.10 def get_offset (self)

Get the offset.

This method returns the offset of this operator.

Parameters:

self

Returns:

The offset of this operator

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.8 AlternateUnit Class Reference 56

4.7.2.11 def is_linear (self)

Check if this operator is linear.

This operator is not linear.

Parameters:

self

Returns:

False

Reimplemented from UnitOperator (p. 329).

4.7.3 Member Data Documentation

4.7.3.1 __offset__ [private]

4.8 AlternateUnit Class Reference

Inheritance diagram for AlternateUnit::

AlternateUnit

DerivedUnit

Unit

4.8.1 Detailed Description

This class provides an interface for units that describe the same dimension as another
unit, but need to be distinguished from it by another symbol (e.g. to abbreviate them,
or to distinguish their purpose).

For examle [N] :=
[

kg×m
s2

]
.

Note:

Instances of this class can be serialized using pickle.

Public Member Functions

• def __eq__
Checks if two alternate units are equal.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.8 AlternateUnit Class Reference 57

• def __getstate__
Serialization using pickle.

• def __init__
Default constructor.

• def __setstate__
Deserialization using pickle.

• def __str__
Print the current unit. This function is an alias for AlternateUnit.get_symbol (p. 59).

• def get_parent
Returns the parent unit of the this unit.

• def get_symbol
Returns the symbol of this unit.

• def get_system_unit
Returns the corresponding system unit. Since the parent unit is a system unit, this unit
is supposed to be a system unit too. Therefore this function returns this instance.

• def to_system_unit
Get the operator to convert to the system unit. Since the parent unit is a system
unit, this unit is supposed to be a system unit too. Therefore this function returns
operators.IDENTITY (p. 8).

Static Private Attributes

• __parentUnit__ = None
System unit that parents this unit.

• __symbol__ = None
Symbol for the alternate unit.

4.8.2 Member Function Documentation

4.8.2.1 def __eq__ (self, other)

Checks if two alternate units are equal.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.8 AlternateUnit Class Reference 58

other Another alternate unit to compare to.

Returns:

True, if the units are equal.

Reimplemented from Unit (p. 317).

4.8.2.2 def __getstate__ (self)

Serialization using pickle.

Parameters:

self

Returns:

A string that represents the serialized form of this instance.

Reimplemented from Unit (p. 317).

4.8.2.3 def __init__ (self, symbol, parentUnit)

Default constructor.

Parameters:

self
symbol Symbol of the alternate Unit (p. 314).

parentUnit Parent unit.

Exceptions:

UnitExistsException If a unit having the same symbol already exists.

TypeError If the parentUnit is not a SystemUnit.

4.8.2.4 def __setstate__ (self, state)

Deserialization using pickle.

Parameters:

self
state The state of the object.

Exceptions:

UnknownUnitException If the unit to be unpickled is not contained in the global
repository __UNITS_MANAGER__.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.8 AlternateUnit Class Reference 59

See also:

UnitsManager (p. 329)
__UNITS_MANAGER__ (p. 23)

Reimplemented from Unit (p. 320).

4.8.2.5 def __str__ (self)

Print the current unit. This function is an alias for AlternateUnit.get_symbol (p. 59).

Parameters:

self

Returns:

A string describing this unit.

See also:

AlternateUnit.get_symbol (p. 59)

Reimplemented from Unit (p. 320).

4.8.2.6 def get_parent (self)

Returns the parent unit of the this unit.

Parameters:

self

Returns:

Parent unit.

4.8.2.7 def get_symbol (self)

Returns the symbol of this unit.

Parameters:

self

Returns:

Symbol of current unit.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.9 ArcCos Class Reference 60

4.8.2.8 def get_system_unit (self)

Returns the corresponding system unit. Since the parent unit is a system unit, this unit
is supposed to be a system unit too. Therefore this function returns this instance.

Parameters:

self

Returns:

self

Reimplemented from Unit (p. 322).

4.8.2.9 def to_system_unit (self)

Get the operator to convert to the system unit. Since the parent unit is a system unit,
this unit is supposed to be a system unit too. Therefore this function returns opera-
tors.IDENTITY (p. 8).

Parameters:

self

Returns:

operators.IDENTITY (p. 8)

See also:

operators.IDENTITY (p. 8)

Reimplemented from Unit (p. 324).

4.8.3 Member Data Documentation

4.8.3.1 __parentUnit__ = None [static, private]

System unit that parents this unit.

4.8.3.2 __symbol__ = None [static, private]

Symbol for the alternate unit.

4.9 ArcCos Class Reference

Inheritance diagram for ArcCos::

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.9 ArcCos Class Reference 61

ArcCos

CUnaryOperation

CUncertainComponent

4.9.1 Detailed Description

This class models the inverse cosine function.

Public Member Functions

• def get_uncertainty
Get the partial derivate of this component with respect to the given argument.

• def get_value
Get the value of this component.

4.9.2 Member Function Documentation

4.9.2.1 def get_uncertainty (self, x)

Get the partial derivate of this component with respect to the given argument.

Parameters:

self
x The argument of the partial derivation.

Returns:

The partial derivate.

Reimplemented from CUncertainComponent (p. 129).

4.9.2.2 def get_value (self)

Get the value of this component.

Parameters:

self

Returns:

The value of this component.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.10 ArcCos Class Reference 62

Reimplemented from CUncertainComponent (p. 129).

4.10 ArcCos Class Reference

Inheritance diagram for ArcCos::

ArcCos

UnaryOperation

UncertainComponent

4.10.1 Detailed Description

This class models the GUM-tree-nodes that take the Arcus Cosine of a silbling.

Public Member Functions

• def __init__
Default constructor.

• def arithmetic_check
Checks for undefined arguments.

• def equal_debug
A method that is only used for serialization checking.

• def get_uncertainty
Returns the uncertainty of this node. Let the node represent the operation y =
arccos(x) then the resulting uncertainty is u(y) = − 1√

1−x2
u(x).

• def get_value
Returns the Arc Cosine of the silbling.

4.10.2 Member Function Documentation

4.10.2.1 def __init__ (self, right)

Default constructor.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.10 ArcCos Class Reference 63

right Right silbling of this instance.

Reimplemented from UnaryOperation (p. 287).

4.10.2.2 def arithmetic_check (self)

Checks for undefined arguments.

Note:

The Arc Cosine is only defined within [−1, 1].

Parameters:

self

Exceptions:

ArithmeticError If x /∈ [−1, 1].

Reimplemented from UncertainComponent (p. 302).

4.10.2.3 def equal_debug (self, other)

A method that is only used for serialization checking.

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the instance has the same attribute values as the argument

Reimplemented from UnaryOperation (p. 288).

4.10.2.4 def get_uncertainty (self, component)

Returns the uncertainty of this node. Let the node represent the operation y =
arccos(x) then the resulting uncertainty is u(y) = − 1√

1−x2 u(x).

Parameters:

self
component Another instance of uncertainty.

Returns:

A numeric value, representing the standard uncertainty.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.11 ArcCosh Class Reference 64

Exceptions:

ArithmeticError If x2 = 1.

Reimplemented from UncertainComponent (p. 304).

4.10.2.5 def get_value (self)

Returns the Arc Cosine of the silbling.

Parameters:

self

Returns:

A numeric value, representing the Arc Cosine of the silblings.

Reimplemented from UncertainComponent (p. 305).

4.11 ArcCosh Class Reference

Inheritance diagram for ArcCosh::

ArcCosh

UnaryOperation

UncertainComponent

4.11.1 Detailed Description

This class models the GUM-tree-nodes that take the inverse Hyperbolic Cosine.

Public Member Functions

• def __init__
Default constructor.

• def arithmetic_check
Checks for undefined arguments.

• def equal_debug
A method that is only used for serialization checking.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.11 ArcCosh Class Reference 65

• def get_uncertainty
Returns the uncertainty of this node. Let the node represent the operation y =
arccosh(x) then the resulting uncertainty is u(y) = 1√

x−1
√

x+1
u(x).

• def get_value
Returns the Arc Cosine of the silbling.

4.11.2 Member Function Documentation

4.11.2.1 def __init__ (self, right)

Default constructor.

Parameters:

self
right Right silbling of this instance.

Reimplemented from UnaryOperation (p. 287).

4.11.2.2 def arithmetic_check (self)

Checks for undefined arguments.

Note:

The inverse Hyperbolic Cosine is only defined within (1,∞].

Parameters:

self

Exceptions:

ArithmeticError If x /∈ (1,∞].

Reimplemented from UncertainComponent (p. 302).

4.11.2.3 def equal_debug (self, other)

A method that is only used for serialization checking.

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the instance has the same attribute values as the argument

Reimplemented from UnaryOperation (p. 288).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.12 ArcCosh Class Reference 66

4.11.2.4 def get_uncertainty (self, component)

Returns the uncertainty of this node. Let the node represent the operation y =
arccosh(x) then the resulting uncertainty is u(y) = 1√

x−1
√

x+1
u(x).

Parameters:

self
component Another instance of uncertainty.

Returns:

A numeric value, representing the standard uncertainty.

Reimplemented from UncertainComponent (p. 304).

4.11.2.5 def get_value (self)

Returns the Arc Cosine of the silbling.

Parameters:

self

Returns:

A numeric value, representing the Arc Cosine of the silblings.

Reimplemented from UncertainComponent (p. 305).

4.12 ArcCosh Class Reference

Inheritance diagram for ArcCosh::

ArcCosh

CUnaryOperation

CUncertainComponent

4.12.1 Detailed Description

This class models the inverse hyperbolic cosine function.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.13 ArcSin Class Reference 67

Public Member Functions

• def get_uncertainty
Get the partial derivate of this component with respect to the given argument.

• def get_value
Get the value of this component.

4.12.2 Member Function Documentation

4.12.2.1 def get_uncertainty (self, x)

Get the partial derivate of this component with respect to the given argument.

Parameters:

self
x The argument of the partial derivation.

Returns:

The partial derivate.

Reimplemented from CUncertainComponent (p. 129).

4.12.2.2 def get_value (self)

Get the value of this component.

Parameters:

self

Returns:

The value of this component.

Reimplemented from CUncertainComponent (p. 129).

4.13 ArcSin Class Reference

Inheritance diagram for ArcSin::

ArcSin

UnaryOperation

UncertainComponent

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.13 ArcSin Class Reference 68

4.13.1 Detailed Description

This class models the GUM-tree-nodes that take the Arc Sine of a silbling.

Public Member Functions

• def __init__
Default constructor.

• def arithmetic_check
Checks for undefined arguments.

• def equal_debug
A method that is only used for serialization checking.

• def get_uncertainty
Returns the uncertainty of this node. Let the node represent the operation y =
arcsin(x) then the resulting uncertainty is u(y) = 1√

1−x2
u(x).

• def get_value
Returns the Arc Sine of the silbling.

4.13.2 Member Function Documentation

4.13.2.1 def __init__ (self, right)

Default constructor.

Parameters:

self
right Right silbling of this instance.

Reimplemented from UnaryOperation (p. 287).

4.13.2.2 def arithmetic_check (self)

Checks for undefined arguments.

Note:

The Arc Sine is only defined within [−1, 1].

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.13 ArcSin Class Reference 69

Exceptions:

ArithmeticError If x /∈ [−1, 1].

Reimplemented from UncertainComponent (p. 302).

4.13.2.3 def equal_debug (self, other)

A method that is only used for serialization checking.

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the instance has the same attribute values as the argument

Reimplemented from UnaryOperation (p. 288).

4.13.2.4 def get_uncertainty (self, component)

Returns the uncertainty of this node. Let the node represent the operation y =
arcsin(x) then the resulting uncertainty is u(y) = 1√

1−x2 u(x).

Parameters:

self
component Another instance of uncertainty.

Returns:

A numeric value, representing the standard uncertainty.

Exceptions:

ArithmeticError If x2 = 1.

Reimplemented from UncertainComponent (p. 304).

4.13.2.5 def get_value (self)

Returns the Arc Sine of the silbling.

Parameters:

self

Returns:

A numeric value, representing the Arc Sine of the silblings.

Reimplemented from UncertainComponent (p. 305).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.14 ArcSin Class Reference 70

4.14 ArcSin Class Reference

Inheritance diagram for ArcSin::

ArcSin

CUnaryOperation

CUncertainComponent

4.14.1 Detailed Description

This class models the inverse sine function.

Public Member Functions

• def get_uncertainty
Get the partial derivate of this component with respect to the given argument.

• def get_value
Get the value of this component.

4.14.2 Member Function Documentation

4.14.2.1 def get_uncertainty (self, x)

Get the partial derivate of this component with respect to the given argument.

Parameters:

self
x The argument of the partial derivation.

Returns:

The partial derivate.

Reimplemented from CUncertainComponent (p. 129).

4.14.2.2 def get_value (self)

Get the value of this component.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.15 ArcSinh Class Reference 71

Parameters:

self

Returns:

The value of this component.

Reimplemented from CUncertainComponent (p. 129).

4.15 ArcSinh Class Reference

Inheritance diagram for ArcSinh::

ArcSinh

CUnaryOperation

CUncertainComponent

4.15.1 Detailed Description

This class models the inverse hyperbolic sine function.

Public Member Functions

• def get_uncertainty
Get the partial derivate of this component with respect to the given argument.

• def get_value
Get the value of this component.

4.15.2 Member Function Documentation

4.15.2.1 def get_uncertainty (self, x)

Get the partial derivate of this component with respect to the given argument.

Parameters:

self
x The argument of the partial derivation.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.16 ArcSinh Class Reference 72

Returns:

The partial derivate.

Reimplemented from CUncertainComponent (p. 129).

4.15.2.2 def get_value (self)

Get the value of this component.

Parameters:

self

Returns:

The value of this component.

Reimplemented from CUncertainComponent (p. 129).

4.16 ArcSinh Class Reference

Inheritance diagram for ArcSinh::

ArcSinh

UnaryOperation

UncertainComponent

4.16.1 Detailed Description

This class models the GUM-tree-nodes that take the inverse Hyperbolic Sine of a sil-
bling.

Public Member Functions

• def __init__
Default constructor.

• def equal_debug
A method that is only used for serialization checking.

• def get_uncertainty

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.16 ArcSinh Class Reference 73

Returns the uncertainty of this node. Let the node represent the operation y =
arcsinh(x) then the resulting uncertainty is u(y) = 1√

1+x2
u(x).

• def get_value
Returns the inverse Hyperbolic Sine of a silbling.

4.16.2 Member Function Documentation

4.16.2.1 def __init__ (self, right)

Default constructor.

Parameters:

self
right Right silbling of this instance.

Reimplemented from UnaryOperation (p. 287).

4.16.2.2 def equal_debug (self, other)

A method that is only used for serialization checking.

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the instance has the same attribute values as the argument

Reimplemented from UnaryOperation (p. 288).

4.16.2.3 def get_uncertainty (self, component)

Returns the uncertainty of this node. Let the node represent the operation y =
arcsinh(x) then the resulting uncertainty is u(y) = 1√

1+x2 u(x).

Parameters:

self
component Another instance of uncertainty.

Returns:

A numeric value, representing the standard uncertainty.

Reimplemented from UncertainComponent (p. 304).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.17 ArcTan Class Reference 74

4.16.2.4 def get_value (self)

Returns the inverse Hyperbolic Sine of a silbling.

Parameters:

self

Returns:

A numeric value, representing the inverse Hyperbolic Sine of a silbling.

Reimplemented from UncertainComponent (p. 305).

4.17 ArcTan Class Reference

Inheritance diagram for ArcTan::

ArcTan

UnaryOperation

UncertainComponent

4.17.1 Detailed Description

This class models the GUM-tree-nodes that take the Arcus Tangent of a silbling.

Public Member Functions

• def __init__
Default constructor.

• def equal_debug
A method that is only used for serialization checking.

• def get_uncertainty
Returns the uncertainty of this node. Let the node represent the operation y =
arcsin(x) then the resulting uncertainty is u(y) = − 1

1+x2 u(x).

• def get_value
Returns the Arc Tangent of the silbling.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.17 ArcTan Class Reference 75

4.17.2 Member Function Documentation

4.17.2.1 def __init__ (self, right)

Default constructor.

Parameters:

self
right Right silbling of this instance.

Reimplemented from UnaryOperation (p. 287).

4.17.2.2 def equal_debug (self, other)

A method that is only used for serialization checking.

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the instance has the same attribute values as the argument

Reimplemented from UnaryOperation (p. 288).

4.17.2.3 def get_uncertainty (self, component)

Returns the uncertainty of this node. Let the node represent the operation y =
arcsin(x) then the resulting uncertainty is u(y) = − 1

1+x2 u(x).

Parameters:

self
component Another instance of uncertainty.

Returns:

A numeric value, representing the standard uncertainty.

Reimplemented from UncertainComponent (p. 304).

4.17.2.4 def get_value (self)

Returns the Arc Tangent of the silbling.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.18 ArcTan Class Reference 76

Returns:

A numeric value, representing the Arc Tangent of the silblings.

Reimplemented from UncertainComponent (p. 305).

4.18 ArcTan Class Reference

Inheritance diagram for ArcTan::

ArcTan

CUnaryOperation

CUncertainComponent

4.18.1 Detailed Description

This class models the inverse tangent function.

Public Member Functions

• def get_uncertainty
Get the partial derivate of this component with respect to the given argument.

• def get_value
Get the value of this component.

4.18.2 Member Function Documentation

4.18.2.1 def get_uncertainty (self, x)

Get the partial derivate of this component with respect to the given argument.

Parameters:

self
x The argument of the partial derivation.

Returns:

The partial derivate.

Reimplemented from CUncertainComponent (p. 129).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.19 ArcTan2 Class Reference 77

4.18.2.2 def get_value (self)

Get the value of this component.

Parameters:

self

Returns:

The value of this component.

Reimplemented from CUncertainComponent (p. 129).

4.19 ArcTan2 Class Reference

Inheritance diagram for ArcTan2::

ArcTan2

CBinaryOperation

CUncertainComponent

4.19.1 Detailed Description

This class models two-argument inverse tangent.

Public Member Functions

• def get_uncertainty
Get the partial derivate of this component with respect to the given argument.

• def get_value
Get the value of this component.

4.19.2 Member Function Documentation

4.19.2.1 def get_uncertainty (self, x)

Get the partial derivate of this component with respect to the given argument.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.20 ArcTan2 Class Reference 78

x The argument of the partial derivation.

Returns:

The partial derivate.

Reimplemented from CUncertainComponent (p. 129).

4.19.2.2 def get_value (self)

Get the value of this component.

Parameters:

self

Returns:

The value of this component.

Reimplemented from CUncertainComponent (p. 129).

4.20 ArcTan2 Class Reference

Inheritance diagram for ArcTan2::

ArcTan2

BinaryOperation

UncertainComponent

4.20.1 Detailed Description

This class models the inverse two-argument tangent.

Public Member Functions

• def __init__
Default constructor.

• def equal_debug
A method that is only used for serialization checking.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.20 ArcTan2 Class Reference 79

• def get_uncertainty
Returns the uncertainty of this node. Let the node represent the operation y = x1+x2

then the resulting uncertainty is u(y) = u(x1) + u(x2).

• def get_value
Returns the sum of the silblings assigned.

4.20.2 Member Function Documentation

4.20.2.1 def __init__ (self, left, right)

Default constructor.

Parameters:

self
left Left silbling of this instance.
right Right silbling of this instance.

Reimplemented from BinaryOperation (p. 89).

4.20.2.2 def equal_debug (self, other)

A method that is only used for serialization checking.

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the instance has the same attribute values as the argument

Reimplemented from BinaryOperation (p. 89).

4.20.2.3 def get_uncertainty (self, component)

Returns the uncertainty of this node. Let the node represent the operation y = x1 + x2

then the resulting uncertainty is u(y) = u(x1) + u(x2).

Parameters:

self
component Another instance of uncertainty.

Returns:

A numeric value, representing the standard uncertainty.

Reimplemented from UncertainComponent (p. 304).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.21 ArcTanh Class Reference 80

4.20.2.4 def get_value (self)

Returns the sum of the silblings assigned.

Parameters:

self

Returns:

A numeric value, representing the inverse two-argument tangent of the inputs.

Reimplemented from UncertainComponent (p. 305).

4.21 ArcTanh Class Reference

Inheritance diagram for ArcTanh::

ArcTanh

UnaryOperation

UncertainComponent

4.21.1 Detailed Description

This class models the GUM-tree-nodes that take the inverse Hyperbolic Tangent of a
silbling.

Public Member Functions

• def __init__
Default constructor.

• def arithmetic_check
Checks for undefined arguments.

• def equal_debug
A method that is only used for serialization checking.

• def get_uncertainty
Returns the uncertainty of this node. Let the node represent the operation y =
arctanh(x) then the resulting uncertainty is u(y) = 1

1−x2 u(x).

• def get_value

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.21 ArcTanh Class Reference 81

Returns the Arc Tangent of the silbling.

4.21.2 Member Function Documentation

4.21.2.1 def __init__ (self, right)

Default constructor.

Parameters:

self
right Right silbling of this instance.

Reimplemented from UnaryOperation (p. 287).

4.21.2.2 def arithmetic_check (self)

Checks for undefined arguments.

Note:

The inverse Hyperbolic Tangent is only defined within (−1, 1).

Parameters:

self

Exceptions:

ArithmeticError If x /∈ (−1, 1).

Reimplemented from UncertainComponent (p. 302).

4.21.2.3 def equal_debug (self, other)

A method that is only used for serialization checking.

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the instance has the same attribute values as the argument

Reimplemented from UnaryOperation (p. 288).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.22 ArcTanh Class Reference 82

4.21.2.4 def get_uncertainty (self, component)

Returns the uncertainty of this node. Let the node represent the operation y =
arctanh(x) then the resulting uncertainty is u(y) = 1

1−x2 u(x).

Parameters:

self
component Another instance of uncertainty.

Returns:

A numeric value, representing the standard uncertainty.

Reimplemented from UncertainComponent (p. 304).

4.21.2.5 def get_value (self)

Returns the Arc Tangent of the silbling.

Parameters:

self

Returns:

A numeric value, representing the inverse hyperbolic Tangent of the silblings.

Reimplemented from UncertainComponent (p. 305).

4.22 ArcTanh Class Reference

Inheritance diagram for ArcTanh::

ArcTanh

CUnaryOperation

CUncertainComponent

4.22.1 Detailed Description

This class models the inverse hyperbolic tangent function.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.23 BaseUnit Class Reference 83

Public Member Functions

• def get_uncertainty
Get the partial derivate of this component with respect to the given argument.

• def get_value
Get the value of this component.

4.22.2 Member Function Documentation

4.22.2.1 def get_uncertainty (self, x)

Get the partial derivate of this component with respect to the given argument.

Parameters:

self
x The argument of the partial derivation.

Returns:

The partial derivate.

Reimplemented from CUncertainComponent (p. 129).

4.22.2.2 def get_value (self)

Get the value of this component.

Parameters:

self

Returns:

The value of this component.

Reimplemented from CUncertainComponent (p. 129).

4.23 BaseUnit Class Reference

Inheritance diagram for BaseUnit::

BaseUnit

Unit

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.23 BaseUnit Class Reference 84

4.23.1 Detailed Description

This class provides the interface to define and use base units.

A base unit is a unit that describes a single physical dimension. It can not be formed
from other base units from other physical dimensions. Therefore, a base unit has to be
unique. In order to ensure this, we do assign a unique symbol to each base unit.

Note:

Instances of this class can be serialized using pickle.

Public Member Functions

• def __eq__
Check two if two base units are equal.

• def __getstate__
Serialization using pickle.

• def __init__
Default constructor.

• def __setstate__
Deserialization using pickle.

• def __str__
Return a string describing this unit.

• def get_symbol
Return the symbol of this unit.

• def get_system_unit
Get the corresponding system unit. Since it is a base unit, it returns itself.

• def to_system_unit
Get the operator to the system unit. Since it is a system unit, it returns opera-
tors.IDENTITY (p. 8).

Static Private Attributes

• __symbol__ = None
Unique symbol describing the BaseUnit (p. 83).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.23 BaseUnit Class Reference 85

4.23.2 Member Function Documentation

4.23.2.1 def __eq__ (self, other)

Check two if two base units are equal.

Two base units are equal if they have the same unit symbol.

Parameters:

self
other Another unit.

Reimplemented from Unit (p. 317).

4.23.2.2 def __getstate__ (self)

Serialization using pickle.

Parameters:

self

Returns:

A string that represents the serialized form of this instance.

Reimplemented from Unit (p. 317).

4.23.2.3 def __init__ (self, symbol)

Default constructor.

Assigns the desired symbol to the respective BaseUnit (p. 83) and checks if an other
instance of a unit already exists that has the same symbol.

Parameters:

self
symbol A symbol identifying the BaseUnit (p. 83).

Exceptions:

UnitExistsException If a unit having the same symbol already exists.

See also:

AlternateUnit (p. 56)

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.23 BaseUnit Class Reference 86

4.23.2.4 def __setstate__ (self, state)

Deserialization using pickle.

Parameters:

self
state The state of the object.

Exceptions:

UnknownUnitException If the unit to be unpickled is not contained in the global
repository __UNITS_MANAGER__.

See also:

UnitsManager (p. 329)
__UNITS_MANAGER__ (p. 23)

Reimplemented from Unit (p. 320).

4.23.2.5 def __str__ (self)

Return a string describing this unit.

Parameters:

self

Returns:

The symbol of this unit.

See also:

BaseUnit.get_symbol (p. 86)

Reimplemented from Unit (p. 320).

4.23.2.6 def get_symbol (self)

Return the symbol of this unit.

Parameters:

self

Returns:

The symbol of the BaseUnit (p. 83).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.24 BinaryOperation Class Reference 87

4.23.2.7 def get_system_unit (self)

Get the corresponding system unit. Since it is a base unit, it returns itself.

Parameters:

self

Returns:

The corresponding system unit.

See also:

Unit.get_system_unit (p. 322)

Reimplemented from Unit (p. 322).

4.23.2.8 def to_system_unit (self)

Get the operator to the system unit. Since it is a system unit, it returns opera-
tors.IDENTITY (p. 8).

Returns:

operators.IDENTITY (p. 8)

See also:

Unit.to_system_unit (p. 324)

Reimplemented from Unit (p. 324).

4.23.3 Member Data Documentation

4.23.3.1 __symbol__ = None [static, private]

Unique symbol describing the BaseUnit (p. 83).

4.24 BinaryOperation Class Reference

Inheritance diagram for BinaryOperation::

BinaryOperation

UncertainComponent

Add ArcTan2 Div Mul Pow Sub

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.24 BinaryOperation Class Reference 88

4.24.1 Detailed Description

The abstract base class for modelling binary operations. This class provides the abstract
interface for GUM-tree-nodes that have two silblings.

Public Member Functions

• def __getstate__
Serialization using pickle.

• def __init__
Default constructor.

• def __setstate__
Deserialization using pickle.

• def depends_on
Get the components of uncertainty, that this class depends on.

• def equal_debug
A method that is only used for serialization checking.

• def get_left
Return the left silbling.

• def get_right
Return the right silbling.

Static Private Attributes

• __left = None
The left silbling of the operation.

• __right = None
The right silbling of the operation.

4.24.2 Member Function Documentation

4.24.2.1 def __getstate__ (self)

Serialization using pickle.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.24 BinaryOperation Class Reference 89

Returns:

A string that represents the serialized form of this instance.

Reimplemented from UncertainComponent (p. 295).

4.24.2.2 def __init__ (self, left, right)

Default constructor.

Attention:

If you extend this class call this constructor explicitly in order to initialize the
silblings!

Parameters:

self
left Left silbling of this instance.

right Right silbling of this instance.

Reimplemented in Add (p. 50), ArcTan2 (p. 79), Mul (p. 162), Div (p. 144), Sub
(p. 242), and Pow (p. 174).

4.24.2.3 def __setstate__ (self, state)

Deserialization using pickle.

Parameters:

self
state The state of the object.

Reimplemented from UncertainComponent (p. 299).

4.24.2.4 def depends_on (self)

Get the components of uncertainty, that this class depends on.

Returns:

A list of the components of uncertainty.

Reimplemented from UncertainComponent (p. 303).

4.24.2.5 def equal_debug (self, other)

A method that is only used for serialization checking.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.25 CBinaryOperation Class Reference 90

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the instance has the same attribute values as the argument

Reimplemented from UncertainComponent (p. 303).

Reimplemented in Add (p. 51), ArcTan2 (p. 79), Mul (p. 162), Div (p. 144), Sub
(p. 243), and Pow (p. 174).

4.24.2.6 def get_left (self)

Return the left silbling.

Returns:

The left silbling.

4.24.2.7 def get_right (self)

Return the right silbling.

Returns:

The right silbling.

4.24.3 Member Data Documentation

4.24.3.1 __left = None [static, private]

The left silbling of the operation.

4.24.3.2 __right = None [static, private]

The right silbling of the operation.

4.25 CBinaryOperation Class Reference

Inheritance diagram for CBinaryOperation::

CBinaryOperation

CUncertainComponent

Add ArcTan2 Div Mul Pow Sub

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.25 CBinaryOperation Class Reference 91

4.25.1 Detailed Description

This abstract class models a binary operation.

Public Member Functions

• def __init__
The default constructor.

• def depends_on
Get the instances of CUncertainInput (p. 133) that this instance depends on.

• def get_left
Get the left sibling of this operation.

• def get_right
Get the right sibling of this operation.

Private Attributes

• __left
• __right

4.25.2 Member Function Documentation

4.25.2.1 def __init__ (self, left, right)

The default constructor.

Parameters:

self
left The left sibling sibling of this operation.
right The right sibling sibling of this operation.

4.25.2.2 def depends_on (self)

Get the instances of CUncertainInput (p. 133) that this instance depends on.

Parameters:

self

Returns:

A list containing the instances of CUncertainInput (p. 133) that this instance de-
pends on.

Reimplemented from CUncertainComponent (p. 128).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.26 CompoundOperator Class Reference 92

4.25.2.3 def get_left (self)

Get the left sibling of this operation.

Parameters:

self

Returns:

The sibling

4.25.2.4 def get_right (self)

Get the right sibling of this operation.

Parameters:

self

Returns:

The sibling

4.25.3 Member Data Documentation

4.25.3.1 __left [private]

4.25.3.2 __right [private]

4.26 CompoundOperator Class Reference

Inheritance diagram for CompoundOperator::

CompoundOperator

UnitOperator

4.26.1 Detailed Description

Compound Operator.

This class is used to generate compound operators (i.e. by calling the concat method
of the UnitOperator (p. 326)).

Note:

Instances of this class can be serialized using pickle.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.26 CompoundOperator Class Reference 93

Public Member Functions

• def __eq__
Test for equality.

• def __getstate__
Serialization using pickle.

• def __init__
Default Constructor.

• def __invert__
Invert the current operation.

• def __setstate__
Deserialization using pickle.

• def __str__
Represent this operation by a string.

• def convert
Convert a value.

• def is_linear
Check if the Operator is linear.

Private Attributes

• __firstOperator__
• __secondOperator__

4.26.2 Member Function Documentation

4.26.2.1 def __eq__ (self, other)

Test for equality.

Parameters:

self
other Another UnitOperator (p. 326).

Reimplemented from UnitOperator (p. 327).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.26 CompoundOperator Class Reference 94

4.26.2.2 def __getstate__ (self)

Serialization using pickle.

Parameters:

self

Returns:

A string that represents the serialized form of this instance.

Reimplemented from UnitOperator (p. 327).

4.26.2.3 def __init__ (self, firstOp, secondOp)

Default Constructor.

For example let the secondOp be g(x) and the firstOp be f(x) then the compound
Operator models f(g(x)).

Parameters:

self
firstOp The operator that is performed at first.

secondOp The operator that is performed at last.

4.26.2.4 def __invert__ (self)

Invert the current operation.

This method returns the inverse Operation of the current operation. Since this Op-
eration is based on two Operations the operations are inverted in the reverse or-
der. For example let this Operator model y = f(g(x)) the inverse Operator models
x = g−1(f−1(y)).

Parameters:

self

Returns:

The inverse operation of the current operation.

Reimplemented from UnitOperator (p. 327).

4.26.2.5 def __setstate__ (self, state)

Deserialization using pickle.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.26 CompoundOperator Class Reference 95

state The state of the object.

Reimplemented from UnitOperator (p. 328).

4.26.2.6 def __str__ (self)

Represent this operation by a string.

Parameters:

self

Returns:

A string describing this operation.

Reimplemented from UnitOperator (p. 328).

4.26.2.7 def convert (self, value)

Convert a value.

This method performs the desired operation on an absolute value.

Parameters:

self The current instance of this class.

value The value to convert.

Returns:

the converted value

Reimplemented from UnitOperator (p. 329).

4.26.2.8 def is_linear (self)

Check if the Operator is linear.

This operator is linear if the underlying operators are linear.

Parameters:

self The current instance of this class.

Returns:

True if both underlying operators are linear.

Reimplemented from UnitOperator (p. 329).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.27 CompoundUnit Class Reference 96

4.26.3 Member Data Documentation

4.26.3.1 __firstOperator__ [private]

4.26.3.2 __secondOperator__ [private]

4.27 CompoundUnit Class Reference

Inheritance diagram for CompoundUnit::

CompoundUnit

DerivedUnit

Unit

4.27.1 Detailed Description

This class provides an interface for describing compound units. The units forming
a compound unit have to describe the same physical dimension. For example time
[hour : min : second].

Note:

Instances of this class can be serialized using pickle.

Public Member Functions

• def __eq__
This function checks if two compound units are equal. Two compound units are equal,
if they have equal first and next units.

• def __getstate__
Serialization using pickle.

• def __init__
Default constructor. Both arguments have to describe the same physical dimension
and they have to have the same system unit.

• def __setstate__
Deserialization using pickle.

• def __str__

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.27 CompoundUnit Class Reference 97

Print the current unit. This function returns a string of the form first:next.

• def get_first
Get the first unit.

• def get_next
Get the next unit.

• def get_system_unit
Returns the corresponding system unit.

• def to_system_unit
Get the operator to convert to the system unit. We assume that the operator of the first
element of this compound unit performs the conversion correctly.

Static Private Attributes

• __first__ = None
The first unit.

• __next__ = None
The next unit.

4.27.2 Member Function Documentation

4.27.2.1 def __eq__ (self, other)

This function checks if two compound units are equal. Two compound units are equal,
if they have equal first and next units.

Attention:

The order of the first and next units matters (i.e. hh : mm 6= mm : hh)!

Parameters:

self
other Another compound unit to compare to.

Returns:

True, if the units are equal.

Reimplemented from Unit (p. 317).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.27 CompoundUnit Class Reference 98

4.27.2.2 def __getstate__ (self)

Serialization using pickle.

Parameters:

self

Returns:

A string that represents the serialized form of this instance.

Reimplemented from Unit (p. 317).

4.27.2.3 def __init__ (self, firstUnit, nextUnit)

Default constructor. Both arguments have to describe the same physical dimension and
they have to have the same system unit.

Parameters:

self
firstUnit The first unit.
nextUnit The unit to attach to the first unit.

Exceptions:

TypeError If the units describe different dimensions.

4.27.2.4 def __setstate__ (self, state)

Deserialization using pickle.

Parameters:

self
state The state of the object.

Reimplemented from Unit (p. 320).

4.27.2.5 def __str__ (self)

Print the current unit. This function returns a string of the form first:next.

Parameters:

self

Returns:

A string describing this unit.

Reimplemented from Unit (p. 320).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.27 CompoundUnit Class Reference 99

4.27.2.6 def get_first (self)

Get the first unit.

Parameters:

self

Returns:

The first unit of this compound unit.

4.27.2.7 def get_next (self)

Get the next unit.

Parameters:

self

Returns:

The first unit of this compound unit.

4.27.2.8 def get_system_unit (self)

Returns the corresponding system unit.

Note:

All units forming this unit have the same system unit.

Returns:

The corresponding system unit.

Reimplemented from Unit (p. 322).

4.27.2.9 def to_system_unit (self)

Get the operator to convert to the system unit. We assume that the operator of the first
element of this compound unit performs the conversion correctly.

Parameters:

self

Returns:

The operator to the system unit of the first element

See also:

CompoundUnit.__first__ (p. 100)

Reimplemented from Unit (p. 324).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.28 Conjugate Class Reference 100

4.27.3 Member Data Documentation

4.27.3.1 __first__ = None [static, private]

The first unit.

4.27.3.2 __next__ = None [static, private]

The next unit.

4.28 Conjugate Class Reference

Inheritance diagram for Conjugate::

Conjugate

CUnaryOperation

CUncertainComponent

4.28.1 Detailed Description

This class models taking the negative of a complex value.

Public Member Functions

• def get_uncertainty
Get the partial derivate of this component with respect to the given argument.

• def get_value
Get the value of this component.

4.28.2 Member Function Documentation

4.28.2.1 def get_uncertainty (self, x)

Get the partial derivate of this component with respect to the given argument.

Parameters:

self
x The argument of the partial derivation.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.29 Context Class Reference 101

Returns:

The partial derivate.

Reimplemented from CUncertainComponent (p. 129).

4.28.2.2 def get_value (self)

Get the value of this component.

Parameters:

self

Returns:

The value of this component.

Reimplemented from CUncertainComponent (p. 129).

4.29 Context Class Reference

4.29.1 Detailed Description

This class provides the context for an uncertainty evaluation. It maintains the corre-
lation between the inputs and can be used to evaluate the combined standard uncer-
tainty, as shown below. Let your model be y = f(x1, x2, . . . , xN), then u2

c(y) =∑N
i=1

(
δf
δxi

)2

u2(xi) + 2
∑N

i=1

∑N
j=i+1

δf
δxi

δf
δxj

u(xi, xj).

Public Member Functions

• def __init__
This method initializes the correlation matrix of this context.

• def dof
This method calculates the effective degrees of freedom using the Welch-Satterthwaite
formulae: νeff =

u4
c(y)∑N

i=1

(
δf
δxi

)4
u4(xi)

νi

Where uc(y) is the combined standard un-

certainty, νi is the degrees of freedom of the input xi.

• def get_correlation
This method returns the correlation coefficient r(x1, x2) of two inputs. Where
r(x1, x2) = u(x1,x2)

u(x1)u(x2)
. If no correlation has been defined before, this method re-

turns 0.0, except for x1 = x2. In the last case this method returns 1.0.

• def set_correlation
This method sets the correlation coefficient r(x1, x2) of two inputs. Where
r(x1, x2) = u(x1,x2)

u(x1)u(x2)
.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.29 Context Class Reference 102

• def uncertainty
This method returns the combined standard uncertainty of an uncertain value.

• def value_of

Private Attributes

• __correlationMatrix

4.29.2 Member Function Documentation

4.29.2.1 def __init__ (self)

This method initializes the correlation matrix of this context.

Note:

You may use the same uncertain components in different contexts. Thus, you could
maintain various correlation models.

Parameters:

self

4.29.2.2 def dof (self, component)

This method calculates the effective degrees of freedom using the Welch-Satterthwaite
formulae: νeff = u4

c(y)∑N

i=1

(
δf
δxi

)4
u4(xi)

νi

Where uc(y) is the combined standard uncer-

tainty, νi is the degrees of freedom of the input xi.

Note:

The result of this method may be infinite. Since there is no standard procedure in
python to declare infinity, we use our own constant for it.

See also:

arithmetic.INFINITY (p. 4) Our infinity constant.

Parameters:

self
component The component of uncertainty.

Returns:

The effective degrees of freedom νeff .

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.29 Context Class Reference 103

4.29.2.3 def get_correlation (self, firstItem, secondItem)

This method returns the correlation coefficient r(x1, x2) of two inputs. Where
r(x1, x2) = u(x1,x2)

u(x1)u(x2)
. If no correlation has been defined before, this method returns

0.0, except for x1 = x2. In the last case this method returns 1.0.

Note:

This libary assumes symmetry of correlation (i.e. r(x1, x2) = r(x2, x1)).

Parameters:

self
firstItem Is x1 as denoted above.

secondItem Is x2 as denoted above.

4.29.2.4 def set_correlation (self, firstItem, secondItem, corr)

This method sets the correlation coefficient r(x1, x2) of two inputs. Where r(x1, x2) =
u(x1,x2)

u(x1)u(x2)
.

Note:

This libary assumes symmetry of correlation (i.e. r(x1, x2) = r(x2, x1)).

Attention:

If the arguments are identical, this method has no effect.

Parameters:

self
firstItem Is x1 as denoted above.

secondItem Is x2 as denoted above.

corr The correlation as described by r(x1, x2).

4.29.2.5 def uncertainty (self, component)

This method returns the combined standard uncertainty of an uncertain value.

Parameters:

self
component The component of uncertainty to evaluate.

Returns:

The standard uncertainty.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.30 Context Class Reference 104

4.29.2.6 def value_of (self, component)

Assign the current context to the given component.

Attention:

This method is only useful in combination with UncertainComponent.__str_-
_ (p. 299). The context assigned is not passed to operations performed on
component.

See also:

UncertainComponent.__str__ (p. 299)

Parameters:

self
component The component to which the context should be attached.

Returns:

component having the context assigned.

4.29.3 Member Data Documentation

4.29.3.1 __correlationMatrix [private]

4.30 Context Class Reference

4.30.1 Detailed Description

This class provides a context for complex-valued uncertainty evaluations. It manages
the correlation coefficients and is able to evaluate the effective degrees of freedom.

Public Member Functions

• def __init__
The default constructor. It initializes the dictionary of correlation matrices.

• def constant
This is a factory method for generating constans for uncertainty evaluations.

• def dof
Calculate the effective degrees of freedom of the argument.

• def gaussian
This is a factory method for generating uncertain inputs that have a Gaussian distri-
bution (i.e. bivariate Normal Distribution).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.30 Context Class Reference 105

• def get_correlation
Get the correlation of two input arguments.

• def set_correlation
This method sets the correlation coefficients of two input arguments.

• def uncertainty
Get the combined standard uncertainty of a complex-valued component of uncer-
tainty.

Private Member Functions

• def __check_cmatrix
Helper function to verify matrices of corellation coefficients.

Private Attributes

• __correlation

Static Private Attributes

• tuple __check_cmatrix = staticmethod(__check_cmatrix)

4.30.2 Member Function Documentation

4.30.2.1 def __check_cmatrix (matrix) [private]

Helper function to verify matrices of corellation coefficients.

Parameters:

matrix The matrix to check.

Exceptions:

TypeError If the argument is invalid

4.30.2.2 def __init__ (self)

The default constructor. It initializes the dictionary of correlation matrices.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.30 Context Class Reference 106

4.30.2.3 def constant (self, val)

This is a factory method for generating constans for uncertainty evaluations.

4.30.2.4 def dof (self, c)

Calculate the effective degrees of freedom of the argument.

Parameters:

self
c The component of uncertainty.

Returns:

The number of effective degress of freedom.

Attention:

The result may me infinite if any of the inputs has an infinite DOF. In this case this
method returns arithmetic.INFINITY (p.4).

See also:

arithmetic.INFINITY (p. 4)

4.30.2.5 def gaussian (self, val, u_r, u_i, dof = arithmetic.INFINITY, matrix =
numpy.matrix([[1, 0])

This is a factory method for generating uncertain inputs that have a Gaussian distribu-
tion (i.e. bivariate Normal Distribution).

Parameters:

self
val The complex value of the input.

u_r The uncertainty of the real part.

u_i The uncertainty of the imaginary part.

dof The degrees of freedom of the variable.

matrix The matrix of correlation coefficients.

4.30.2.6 def get_correlation (self, c1, c2)

Get the correlation of two input arguments.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.30 Context Class Reference 107

c1 The first CUncertainInput (p. 133)

c2 The second CUncertainInput (p. 133)

Returns:

The matrix of correlation coefficients.

4.30.2.7 def set_correlation (self, c1, c2, matrix)

This method sets the correlation coefficients of two input arguments.

Parameters:

self
c1 The first CUncertainInput (p. 133)

c2 The second CUncertainInput (p. 133)

matrix The matrix of correlation coefficients

4.30.2.8 def uncertainty (self, c)

Get the combined standard uncertainty of a complex-valued component of uncertainty.

Parameters:

self
c The component of uncertainty.

Returns:

The matrix expressing the combined standard uncertainty.

Attention:

If the argument is an instance of Quantitiy having the unit [u] then the uncertainty,
expressed as covariance matrix has [u∧2].

4.30.3 Member Data Documentation

4.30.3.1 tuple __check_cmatrix = staticmethod(__check_cmatrix) [static,
private]

4.30.3.2 __correlation [private]

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.31 ConversionException Class Reference 108

4.31 ConversionException Class Reference

Inheritance diagram for ConversionException::

ConversionException

QuantitiesException

4.31.1 Detailed Description

General exception that is raised whenever a unit conversion fails.

See also:

units.Unit.to_system_unit (p. 324)
units.Unit.get_operator_to (p. 322)
operators.UnitOperator (p. 326)

Public Member Functions

• def __init__
Default constructor.

• def __str__
Returns a string describing this exception.

Private Attributes

• __unit__

4.31.2 Member Function Documentation

4.31.2.1 def __init__ (self, unit, args)

Default constructor.

Parameters:

self
unit Instance of a unit that raised the exception.

args Additional arguments of this exception.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.32 Cos Class Reference 109

4.31.2.2 def __str__ (self)

Returns a string describing this exception.

Parameters:

self

Returns:

A string that describes the exception.

4.31.3 Member Data Documentation

4.31.3.1 __unit__ [private]

4.32 Cos Class Reference

Inheritance diagram for Cos::

Cos

UnaryOperation

UncertainComponent

4.32.1 Detailed Description

This class models the GUM-tree-nodes that take the Cosine of a silbling.

Public Member Functions

• def __init__
Default constructor.

• def equal_debug
A method that is only used for serialization checking.

• def get_uncertainty
Returns the uncertainty of this node. Let the node represent the operation y = cos(x)
then the resulting uncertainty is u(y) = −sin(x)× u(x).

• def get_value
Returns the Cosine of the silbling.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.32 Cos Class Reference 110

4.32.2 Member Function Documentation

4.32.2.1 def __init__ (self, right)

Default constructor.

Parameters:

self
right Right silbling of this instance.

Reimplemented from UnaryOperation (p. 287).

4.32.2.2 def equal_debug (self, other)

A method that is only used for serialization checking.

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the instance has the same attribute values as the argument

Reimplemented from UnaryOperation (p. 288).

4.32.2.3 def get_uncertainty (self, component)

Returns the uncertainty of this node. Let the node represent the operation y = cos(x)
then the resulting uncertainty is u(y) = −sin(x)× u(x).

Parameters:

self
component Another instance of uncertainty.

Returns:

A numeric value, representing the standard uncertainty.

Reimplemented from UncertainComponent (p. 304).

4.32.2.4 def get_value (self)

Returns the Cosine of the silbling.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.33 Cos Class Reference 111

Returns:

A numeric value, representing the Cosine of the silblings.

Reimplemented from UncertainComponent (p. 305).

4.33 Cos Class Reference

Inheritance diagram for Cos::

Cos

CUnaryOperation

CUncertainComponent

4.33.1 Detailed Description

This class models the cosine function.

Public Member Functions

• def get_uncertainty
Get the partial derivate of this component with respect to the given argument.

• def get_value
Get the value of this component.

4.33.2 Member Function Documentation

4.33.2.1 def get_uncertainty (self, x)

Get the partial derivate of this component with respect to the given argument.

Parameters:

self
x The argument of the partial derivation.

Returns:

The partial derivate.

Reimplemented from CUncertainComponent (p. 129).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.34 Cosh Class Reference 112

4.33.2.2 def get_value (self)

Get the value of this component.

Parameters:

self

Returns:

The value of this component.

Reimplemented from CUncertainComponent (p. 129).

4.34 Cosh Class Reference

Inheritance diagram for Cosh::

Cosh

CUnaryOperation

CUncertainComponent

4.34.1 Detailed Description

This class models the hyperbolic cosine function.

Public Member Functions

• def get_uncertainty
Get the partial derivate of this component with respect to the given argument.

• def get_value
Get the value of this component.

4.34.2 Member Function Documentation

4.34.2.1 def get_uncertainty (self, x)

Get the partial derivate of this component with respect to the given argument.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.35 Cosh Class Reference 113

x The argument of the partial derivation.

Returns:

The partial derivate.

Reimplemented from CUncertainComponent (p. 129).

4.34.2.2 def get_value (self)

Get the value of this component.

Parameters:

self

Returns:

The value of this component.

Reimplemented from CUncertainComponent (p. 129).

4.35 Cosh Class Reference

Inheritance diagram for Cosh::

Cosh

UnaryOperation

UncertainComponent

4.35.1 Detailed Description

This class models the GUM-tree-nodes that take the Hyperbolic Cosine of a silbling.

Public Member Functions

• def __init__
Default constructor.

• def equal_debug
A method that is only used for serialization checking.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.35 Cosh Class Reference 114

• def get_uncertainty
Returns the uncertainty of this node. Let the node represent the operation y =
cosh(x) then the resulting uncertainty is u(y) = sinh(x)u(x).

• def get_value
Returns the Hyperbolic Cosine of the silbling.

4.35.2 Member Function Documentation

4.35.2.1 def __init__ (self, right)

Default constructor.

Parameters:

self
right Right silbling of this instance.

Reimplemented from UnaryOperation (p. 287).

4.35.2.2 def equal_debug (self, other)

A method that is only used for serialization checking.

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the instance has the same attribute values as the argument

Reimplemented from UnaryOperation (p. 288).

4.35.2.3 def get_uncertainty (self, component)

Returns the uncertainty of this node. Let the node represent the operation y = cosh(x)
then the resulting uncertainty is u(y) = sinh(x)u(x).

Parameters:

self
component Another instance of uncertainty.

Returns:

A numeric value, representing the standard uncertainty.

Reimplemented from UncertainComponent (p. 304).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.36 CUnaryOperation Class Reference 115

4.35.2.4 def get_value (self)

Returns the Hyperbolic Cosine of the silbling.

Parameters:

self

Returns:

A numeric value, representing the Hyperbolic Cosine of the silblings.

Reimplemented from UncertainComponent (p. 305).

4.36 CUnaryOperation Class Reference

Inheritance diagram for CUnaryOperation::

CUnaryOperation

CUncertainComponent

Abs

ArcCos

ArcCosh

ArcSin

ArcSinh

ArcTan

ArcTanh

Conjugate

Cos

Cosh

Exp

Inv

Log

Neg

Sin

Sinh

Sqrt

Tan

Tanh

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.36 CUnaryOperation Class Reference 116

4.36.1 Detailed Description

This abstract class models an unary operation.

Public Member Functions

• def __init__
The default constructor.

• def depends_on
Get the instances of CUncertainInput (p. 133) that this instance depends on.

• def get_sibling
Get the sibling of this operation.

Private Attributes

• __sibling

4.36.2 Member Function Documentation

4.36.2.1 def __init__ (self, sibling)

The default constructor.

Parameters:

self
sibling The sibling of this operation.

4.36.2.2 def depends_on (self)

Get the instances of CUncertainInput (p. 133) that this instance depends on.

Parameters:

self

Returns:

A list containing the instances of CUncertainInput (p. 133) that this instance de-
pends on.

Reimplemented from CUncertainComponent (p. 128).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.37 CUncertainComponent Class Reference 117

4.36.2.3 def get_sibling (self)

Get the sibling of this operation.

Parameters:

self

Returns:

The sibling

4.36.3 Member Data Documentation

4.36.3.1 __sibling [private]

4.37 CUncertainComponent Class Reference

Inheritance diagram for CUncertainComponent::

CUncertainComponent

CBinaryOperation CUnaryOperation CUncertainInput

Add

ArcTan2

Div

Mul

Pow

Sub

Abs

ArcCos

ArcCosh

ArcSin

ArcSinh

ArcTan

ArcTanh

Conjugate

Cos

Cosh

Exp

Inv

Log

Neg

Sin

Sinh

Sqrt

Tan

Tanh

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.37 CUncertainComponent Class Reference 118

4.37.1 Detailed Description

This is the abstract super class of all complex valued uncertain components. Despite
defining the interface for complex valued uncertain components, it also provides a set
of factory methods that act as an interface for numpy.

Public Member Functions

• def __abs__
Return the absolute value of this instance. Let this instance be z = x + jy then this
method returns

√
x2 + y2.

• def __add__
Add (p. 48) another instance to this instance.

• def __coerce__
Implementation of coercion rules.

• def __div__
Divide this instance by another instance.

• def __invert__
Get the inverse of this instance. Let this instance be x then this method returns x−1.

• def __mul__
Multiply another instance with this instance.

• def __neg__
Negate this instance.

• def __pow__
Raise this instance to the power of the argument.

• def __radd__
Add (p. 48) another instance to this instance.

• def __rdiv__
Divide this instance by another instance.

• def __rmul__
Multiply another instance with this instance.

• def __rpow__
Raise this instance to the power of the argument.

• def __rsub__

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.37 CUncertainComponent Class Reference 119

Subtract another instance from this instance.

• def __str__
This method prints the component of uncertainty.

• def __sub__
Subtract another instance from this instance.

• def arccos
Get the inverse cosine of this instance. Let this instance be x then this method returns
cos−1(x).

• def arccosh
Get the inverse hyperbolic cosine of this instance. Let this instance be x then this
method returns cosh−1(x).

• def arcsin
Get the inverse sine of this instance. Let this instance be x then this method returns
sin−1(x).

• def arcsinh
Get the inverse hyperbolic sine of this instance. Let this instance be x then this method
returns sinh−1(x).

• def arctan
Get the inverse tangent of this instance. Let this instance be x then this method returns
tan−1(x).

• def arctan2
Get the two-argument inverse tangent of this instance. Let this instance be x then this
method returns tan−1(x).

• def arctanh
Get the inverse hyperbolic tangent of this instance. Let this instance be x then this
method returns tanh−1(x).

• def conjugate
Get the conjuagte complex value of this instance.

• def cos
Get the cosine of this instance. Let this instance be x then this method returns cos(x).

• def cosh
Get the hyperbolic cosine of this instance. Let this instance be x then this method
returns cosh(x).

• def depends_on

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.37 CUncertainComponent Class Reference 120

This abstact method should return the set of CUncertainInput (p. 133) instances, on
which this instance depends on.

• def exp
Get the exponential of this instance. Let this instance be x then this method returns
ex.

• def fabs
Return the absolute value of this instance. Let this instance be z = x + jy then this
method returns

√
x2 + y2.

• def get_a_value
This method returns the value of this component as a 2x2-matrix.

• def get_context
This returns the assigned context of the component. This context is only needed for
evaluating __str__.

• def get_uncertainty
This abstact method should return the partial derivate of this component with respect
to the input x.

• def get_value
This abstract method should return the complex value of this component.

• def hypot
Calculate the hypothenusis of this and another complex-valued argument.

• def log
Get the natural logarithm of this instance. Let this instance be x then this method
returns ln(x).

• def log10
Get the decadic logarithm of this instance. Let this instance be x then this method
returns log10(x).

• def log2
Get the binary logarithm of this instance. Let this instance be x then this method
returns log2(x).

• def set_context
This assigns a context to the component. This context is only needed for evaluating
__str__.

• def sin
Get the sine of this instance. Let this instance be x then this method returns sin(x).

• def sinh

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.37 CUncertainComponent Class Reference 121

Get the hyperbolic sine of this instance. Let this instance be x then this method returns
sinh(x).

• def sqrt
Get the square-root of this instance. Let this instance be x then this method returns√

x.

• def square
Get the square of this instance. Let this instance be x then this method returns x · x.

• def tan
Get the tangent of this instance. Let this instance be x then this method returns
tan(x).

• def tanh
Get the hyperbolic tangent of this instance. Let this instance be x then this method
returns tanh(x).

• def value_of
This factory method converts the argument to a complex uncertain value.

Static Public Attributes

• tuple value_of = staticmethod(value_of)

Private Attributes

• __context

4.37.2 Member Function Documentation

4.37.2.1 def __abs__ (self)

Return the absolute value of this instance. Let this instance be z = x + jy then this
method returns

√
x2 + y2.

Parameters:

self

Returns:

The absolute value of this instance.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.37 CUncertainComponent Class Reference 122

4.37.2.2 def __add__ (self, y)

Add (p. 48) another instance to this instance.

Parameters:

self
y Another uncertain value.

Returns:

The sum of this instance and the other instance.

4.37.2.3 def __coerce__ (self, other)

Implementation of coercion rules.

See also:

Coercion - The page describing the coercion rules.

4.37.2.4 def __div__ (self, y)

Divide this instance by another instance.

Parameters:

self
y Another uncertain value.

Returns:

The result of the respective operation.

4.37.2.5 def __invert__ (self)

Get the inverse of this instance. Let this instance be x then this method returns x−1.

Parameters:

self

Returns:

The inverse of this instance.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.37 CUncertainComponent Class Reference 123

4.37.2.6 def __mul__ (self, y)

Multiply another instance with this instance.

Parameters:

self
y Another uncertain value.

Returns:

The product of this instance and the other instance.

4.37.2.7 def __neg__ (self)

Negate this instance.

Parameters:

self

Returns:

The negative of this instance.

4.37.2.8 def __pow__ (self, y)

Raise this instance to the power of the argument.

Parameters:

self
y Another uncertain value.

Returns:

The result of the respective operation.

4.37.2.9 def __radd__ (self, y)

Add (p. 48) another instance to this instance.

Parameters:

self
y Another uncertain value.

Returns:

The sum of this instance and the other instance.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.37 CUncertainComponent Class Reference 124

4.37.2.10 def __rdiv__ (self, y)

Divide this instance by another instance.

Parameters:

self
y Another uncertain value.

Returns:

The result of the respective operation.

4.37.2.11 def __rmul__ (self, y)

Multiply another instance with this instance.

Parameters:

self
y Another uncertain value.

Returns:

The product of this instance and the other instance.

4.37.2.12 def __rpow__ (self, y)

Raise this instance to the power of the argument.

Parameters:

self
y Another uncertain value.

Returns:

The result of the respective operation.

4.37.2.13 def __rsub__ (self, y)

Subtract another instance from this instance.

Parameters:

self
y Another uncertain value.

Returns:

The difference of this instance and the other instance.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.37 CUncertainComponent Class Reference 125

4.37.2.14 def __str__ (self)

This method prints the component of uncertainty.

Parameters:

self

Returns:

A string describing this component

4.37.2.15 def __sub__ (self, y)

Subtract another instance from this instance.

Parameters:

self
y Another uncertain value.

Returns:

The difference of this instance and the other instance.

4.37.2.16 def arccos (self)

Get the inverse cosine of this instance. Let this instance be x then this method returns
cos−1(x).

Parameters:

self

Returns:

The inverse cosine of this instance.

4.37.2.17 def arccosh (self)

Get the inverse hyperbolic cosine of this instance. Let this instance be x then this
method returns cosh−1(x).

Parameters:

self

Returns:

The inverse hyperbolic cosine of this instance.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.37 CUncertainComponent Class Reference 126

4.37.2.18 def arcsin (self)

Get the inverse sine of this instance. Let this instance be x then this method returns
sin−1(x).

Parameters:

self

Returns:

The inverse sine of this instance.

4.37.2.19 def arcsinh (self)

Get the inverse hyperbolic sine of this instance. Let this instance be x then this method
returns sinh−1(x).

Parameters:

self

Returns:

The inverse hyperbolic sine of this instance.

4.37.2.20 def arctan (self)

Get the inverse tangent of this instance. Let this instance be x then this method returns
tan−1(x).

Parameters:

self

Returns:

The inverse tangent of this instance.

4.37.2.21 def arctan2 (self, y)

Get the two-argument inverse tangent of this instance. Let this instance be x then this
method returns tan−1(x).

Parameters:

self
y Another component of uncertainty.

Returns:

The two-argument inverse tangent of this instance.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.37 CUncertainComponent Class Reference 127

4.37.2.22 def arctanh (self)

Get the inverse hyperbolic tangent of this instance. Let this instance be x then this
method returns tanh−1(x).

Parameters:

self

Returns:

The inverse hyperbolic tangent of this instance.

4.37.2.23 def conjugate (self)

Get the conjuagte complex value of this instance.

Parameters:

self

Returns:

the conjuagte complex value of this instance.

4.37.2.24 def cos (self)

Get the cosine of this instance. Let this instance be x then this method returns cos(x).

Parameters:

self

Returns:

The cosine of this instance.

4.37.2.25 def cosh (self)

Get the hyperbolic cosine of this instance. Let this instance be x then this method
returns cosh(x).

Parameters:

self

Returns:

The hyperbolic cosine of this instance.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.37 CUncertainComponent Class Reference 128

4.37.2.26 def depends_on (self)

This abstact method should return the set of CUncertainInput (p. 133) instances, on
which this instance depends on.

Parameters:

self

Returns:

A list of CUncertainInputs this instance depends on.

Attention:

This method needs to be overriden to have an effect.

Reimplemented in CUncertainInput (p. 135), CUnaryOperation (p. 116), and
CBinaryOperation (p. 91).

4.37.2.27 def exp (self)

Get the exponential of this instance. Let this instance be x then this method returns ex.

Parameters:

self

Returns:

The exponential value of this instance.

4.37.2.28 def fabs (self)

Return the absolute value of this instance. Let this instance be z = x + jy then this
method returns

√
x2 + y2.

Parameters:

self

Returns:

The absolute value of this instance.

4.37.2.29 def get_a_value (self)

This method returns the value of this component as a 2x2-matrix.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.37 CUncertainComponent Class Reference 129

Returns:

The complex value of this component in matrix form.

Reimplemented in CUncertainInput (p. 135).

4.37.2.30 def get_context (self)

This returns the assigned context of the component. This context is only needed for
evaluating __str__.

Returns:

c The Context (p. 104) of the component or None.

4.37.2.31 def get_uncertainty (self, x)

This abstact method should return the partial derivate of this component with respect
to the input x.

Parameters:

self
x An uncertain input.

Returns:

The uncertainty of this component with respect to the input.

Reimplemented in CUncertainInput (p. 136), Exp (p. 147), Log (p. 156), Sqrt
(p. 239), Sin (p. 235), Cos (p. 111), Tan (p. 247), ArcSin (p. 70), ArcCos (p. 61),
ArcTan (p. 76), Sinh (p. 236), Cosh (p. 112), Tanh (p. 250), ArcSinh (p. 71), Arc-
Cosh (p. 67), ArcTanh (p. 83), Abs (p. 46), Conjugate (p. 100), Neg (p. 170), Inv
(p. 152), Add (p. 49), Sub (p. 244), Mul (p. 161), Div (p. 142), Pow (p. 176), and
ArcTan2 (p. 77).

4.37.2.32 def get_value (self)

This abstract method should return the complex value of this component.

Parameters:

self

Returns:

The value of this component.

Attention:

This method needs to be overriden to have an effect.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.37 CUncertainComponent Class Reference 130

Reimplemented in CUncertainInput (p. 136), Exp (p. 148), Log (p. 156), Sqrt
(p. 239), Sin (p. 235), Cos (p. 112), Tan (p. 247), ArcSin (p. 70), ArcCos (p. 61),
ArcTan (p. 77), Sinh (p. 236), Cosh (p. 113), Tanh (p. 250), ArcSinh (p. 72), Arc-
Cosh (p. 67), ArcTanh (p. 83), Abs (p. 46), Conjugate (p. 101), Neg (p. 171), Inv
(p. 152), Add (p. 49), Sub (p. 244), Mul (p. 161), Div (p. 142), Pow (p. 176), and
ArcTan2 (p. 78).

4.37.2.33 def hypot (self, y)

Calculate the hypothenusis of this and another complex-valued argument.

Parameters:

self
y another component of uncertainty.

Returns:√
x2 + y2

4.37.2.34 def log (self)

Get the natural logarithm of this instance. Let this instance be x then this method
returns ln(x).

Parameters:

self

Returns:

The natural logarithm of this instance.

4.37.2.35 def log10 (self)

Get the decadic logarithm of this instance. Let this instance be x then this method
returns log10(x).

Parameters:

self

Returns:

The decadic logarithm of this instance.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.37 CUncertainComponent Class Reference 131

4.37.2.36 def log2 (self)

Get the binary logarithm of this instance. Let this instance be x then this method returns
log2(x).

Parameters:

self

Returns:

The binary logarithm of this instance.

4.37.2.37 def set_context (self, c)

This assigns a context to the component. This context is only needed for evaluating
__str__.

Parameters:

self
c An instance of Context (p. 104)

4.37.2.38 def sin (self)

Get the sine of this instance. Let this instance be x then this method returns sin(x).

Parameters:

self

Returns:

The sine of this instance.

4.37.2.39 def sinh (self)

Get the hyperbolic sine of this instance. Let this instance be x then this method returns
sinh(x).

Parameters:

self

Returns:

The hyperbolic sine of this instance.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.37 CUncertainComponent Class Reference 132

4.37.2.40 def sqrt (self)

Get the square-root of this instance. Let this instance be x then this method returns
√

x.

Parameters:

self

Returns:

The square-root of this instance.

4.37.2.41 def square (self)

Get the square of this instance. Let this instance be x then this method returns x · x.

Parameters:

self

Returns:

The square of this instance.

4.37.2.42 def tan (self)

Get the tangent of this instance. Let this instance be x then this method returns tan(x).

Parameters:

self

Returns:

The tangent of this instance.

4.37.2.43 def tanh (self)

Get the hyperbolic tangent of this instance. Let this instance be x then this method
returns tanh(x).

Parameters:

self

Returns:

The hyperbolic cosine of this instance.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.38 CUncertainInput Class Reference 133

4.37.2.44 def value_of (value)

This factory method converts the argument to a complex uncertain value.

Parameters:

value A numeric value.

Returns:

An instance of CUncertainComponent (p. 117).

4.37.3 Member Data Documentation

4.37.3.1 __context [private]

4.37.3.2 tuple value_of = staticmethod(value_of) [static]

4.38 CUncertainInput Class Reference

Inheritance diagram for CUncertainInput::

CUncertainInput

CUncertainComponent

4.38.1 Detailed Description

This class models a complex-valued input of a function.

Public Member Functions

• def __getstate__
This method provides an interface for serializing objects using pickle.

• def __init__
The default constructor.

• def __setstate__
This method provides an interface for deserializing objects using pickle.

• def depends_on
Returns a list that contains this instance only.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.38 CUncertainInput Class Reference 134

• def get_a_value
Get the value as array.

• def get_dof
Get the degrees of freedom assigned to this input.

• def get_uncertainty
If x == self get the uncertainty of the current node, otherwise return a matrix of
zeros.

• def get_value
Get the value of this input.

Private Attributes

• __avalue
• __dof
• __jac
• __value

4.38.2 Member Function Documentation

4.38.2.1 def __getstate__ (self)

This method provides an interface for serializing objects using pickle.

Parameters:

self

Returns:

The state of this component.

4.38.2.2 def __init__ (self, value, u_real, u_imag, dof = arithmetic.INFINITY)

The default constructor.

Parameters:

self
value The value of this instance.

u_real The uncertainty of the real part.

u_imag The uncertainty of the imaginary part.

dof The degrees of freedom of the input.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.38 CUncertainInput Class Reference 135

Attention:

You must not declare instances of quantities.QuantityQuantity as uncertain. In-
stead encapsulate an uncertain value inside a quantity.

See also:

UncertainQuantity.py

4.38.2.3 def __setstate__ (self, state)

This method provides an interface for deserializing objects using pickle.

Parameters:

self
state The state to be restored.

4.38.2.4 def depends_on (self)

Returns a list that contains this instance only.

Parameters:

self

Returns:

A list.

Reimplemented from CUncertainComponent (p. 128).

4.38.2.5 def get_a_value (self)

Get the value as array.

Parameters:

self

Returns:

The value of this input as array.

Reimplemented from CUncertainComponent (p. 128).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.38 CUncertainInput Class Reference 136

4.38.2.6 def get_dof (self)

Get the degrees of freedom assigned to this input.

Parameters:

self

Returns:

The degrees of freedom assigned to this input.

4.38.2.7 def get_uncertainty (self, x)

If x == self get the uncertainty of the current node, otherwise return a matrix of
zeros.

Parameters:

self
x Another instance of CUncertainInput (p. 133)

Returns:

The uncertainty of this instance with respect to the argument.

Reimplemented from CUncertainComponent (p. 129).

4.38.2.8 def get_value (self)

Get the value of this input.

Parameters:

self

Returns:

The value of this input

Reimplemented from CUncertainComponent (p. 129).

4.38.3 Member Data Documentation

4.38.3.1 __avalue [private]

4.38.3.2 __dof [private]

4.38.3.3 __jac [private]

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.39 DerivedUnit Class Reference 137

4.38.3.4 __value [private]

4.39 DerivedUnit Class Reference

Inheritance diagram for DerivedUnit::

DerivedUnit

Unit

AlternateUnit CompoundUnit ProductUnit TransformedUnit

4.39.1 Detailed Description

This class provides an abstract interface for all units that have been transformed from
other units.

Attention:

This class is intended to be abstract. Instancing it makes no effect.

See also:

AlternateUnit (p. 56)
CompoundUnit (p. 96)
ProductUnit (p. 176)
TransformedUnit (p. 281)

Public Member Functions

• def __init__
abstract default constructor.

4.39.2 Member Function Documentation

4.39.2.1 def __init__ (self)

abstract default constructor.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.40 Dimension Class Reference 138

4.40 Dimension Class Reference

4.40.1 Detailed Description

This class provides an interface to model physical dimensions.

In order to distinguish between different dimensions, we add an unique symbol to each
dimension. In order to aviod confusion, the symbols for physical dimensions must not
interfer with the symbols used for base units and alternate units.

See also:

BaseUnit (p. 83)
AlternateUnit (p. 56)

Attention:

This class should not be inherited. It describes the any phyiscal dimension cor-
rectly.

Note:

Instances of this class can be serialized using pickle.

Public Member Functions

• def __div__
Return a dimension that describes the fraction of the current and another dimension.

• def __eq__
This function checks if two dimensions are equal.

• def __getstate__
Serialization using pickle.

• def __init__
This is the default constructor.

• def __mul__
Return a dimension that describes the product of the current and another dimension.

• def __pow__
Return a dimension that represents the current dimension raised to an integer power.

• def __setstate__
Deserialization using pickle.

• def __str__
Return a string describing the physical dimension.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.40 Dimension Class Reference 139

• def get_symbol
Same as __eq__.

• def root
Return a dimension that represents the root of the current dimension.

Static Private Attributes

• __pseudoUnit__ = None

4.40.2 Member Function Documentation

4.40.2.1 def __div__ (self, other)

Return a dimension that describes the fraction of the current and another dimension.

Parameters:

self
other Another instance of a Dimension (p. 138).

Returns:

A new dimension representing the fraction.

4.40.2.2 def __eq__ (self, other)

This function checks if two dimensions are equal.

Parameters:

self
other Another dimension.

Returns:

True, if the dimensions are equal.

4.40.2.3 def __getstate__ (self)

Serialization using pickle.

Parameters:

self

Returns:

A string that represents the serialized form of this instance.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.40 Dimension Class Reference 140

4.40.2.4 def __init__ (self, value)

This is the default constructor.

This function creates a physical dimension.

Parameters:

self
value An unique symbol that is used to model the dimension.

Exceptions:

UnitExistsException If the same symbol already exists in the dictionary of units.

4.40.2.5 def __mul__ (self, other)

Return a dimension that describes the product of the current and another dimension.

Parameters:

self
other Another instance of a Dimension (p. 138).

Returns:

A new dimension representing the product.

4.40.2.6 def __pow__ (self, value)

Return a dimension that represents the current dimension raised to an integer power.

Parameters:

self
value An integer to be used as power.

Returns:

A new dimension representing the power.

4.40.2.7 def __setstate__ (self, state)

Deserialization using pickle.

Parameters:

self
state The state of the object.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.40 Dimension Class Reference 141

4.40.2.8 def __str__ (self)

Return a string describing the physical dimension.

The physical dimensions are described in the same way as units.

Parameters:

self

Returns:

A string describing this dimension.

See also:

Unit.__str__ (p. 320)

4.40.2.9 def get_symbol (self)

Same as __eq__.

Parameters:

self

See also:

Dimension.__eq__ (p. 139)

4.40.2.10 def root (self, value)

Return a dimension that represents the root of the current dimension.

Parameters:

self
value An integer to be used as root.

Returns:

A new dimension representing the root.

4.40.3 Member Data Documentation

4.40.3.1 __pseudoUnit__ = None [static, private]

A pseudo unit representing the physical unit. All Operations that can be performed
on units are also applicable to Dimensions. Therefore each dimension is represented
internally by a pseudo Unit (p. 314).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.41 Div Class Reference 142

4.41 Div Class Reference

Inheritance diagram for Div::

Div

CBinaryOperation

CUncertainComponent

4.41.1 Detailed Description

This class models dividing two complex values.

Public Member Functions

• def get_uncertainty
Get the partial derivate of this component with respect to the given argument.

• def get_value
Get the value of this component.

4.41.2 Member Function Documentation

4.41.2.1 def get_uncertainty (self, x)

Get the partial derivate of this component with respect to the given argument.

Parameters:

self
x The argument of the partial derivation.

Returns:

The partial derivate.

Reimplemented from CUncertainComponent (p. 129).

4.41.2.2 def get_value (self)

Get the value of this component.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.42 Div Class Reference 143

Parameters:

self

Returns:

The value of this component.

Reimplemented from CUncertainComponent (p. 129).

4.42 Div Class Reference

Inheritance diagram for Div::

Div

BinaryOperation

UncertainComponent

4.42.1 Detailed Description

This class models GUM-tree nodes that divide two silblings.

Public Member Functions

• def __init__
Default constructor.

• def arithmetic_check
Checks for divide by zero.

• def equal_debug
A method that is only used for serialization checking.

• def get_uncertainty
Returns the uncertainty of this node. Let the node represent the operation y = x1

x2

then the resulting uncertainty is u(y) = u(x1)
x2

− x1×u(x2)

x2
2

.

• def get_value
Returns the fraction of the silblings assigned.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.42 Div Class Reference 144

4.42.2 Member Function Documentation

4.42.2.1 def __init__ (self, left, right)

Default constructor.

Parameters:

self
left Left silbling of this instance.

right Right silbling of this instance.

Reimplemented from BinaryOperation (p. 89).

4.42.2.2 def arithmetic_check (self)

Checks for divide by zero.

Parameters:

self

Exceptions:

ArithmeticError If the right silbling returns 0.0 as value.

Reimplemented from UncertainComponent (p. 302).

4.42.2.3 def equal_debug (self, other)

A method that is only used for serialization checking.

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the instance has the same attribute values as the argument

Reimplemented from BinaryOperation (p. 89).

4.42.2.4 def get_uncertainty (self, component)

Returns the uncertainty of this node. Let the node represent the operation y = x1
x2

then

the resulting uncertainty is u(y) = u(x1)
x2

− x1×u(x2)
x2
2

.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.43 Exp Class Reference 145

component Another instance of uncertainty.

Returns:

A numeric value, representing the standard uncertainty.

Reimplemented from UncertainComponent (p. 304).

4.42.2.5 def get_value (self)

Returns the fraction of the silblings assigned.

Parameters:

self

Returns:

A numeric value, representing the fraction of the silblings.

Reimplemented from UncertainComponent (p. 305).

4.43 Exp Class Reference

Inheritance diagram for Exp::

Exp

UnaryOperation

UncertainComponent

4.43.1 Detailed Description

This class models the GUM-tree-nodes that take the exponential of a silbling.

Public Member Functions

• def __init__
Default constructor.

• def equal_debug
A method that is only used for serialization checking.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.43 Exp Class Reference 146

• def get_uncertainty
Returns the uncertainty of this node. Let the node represent the operation y = ex

then the resulting uncertainty is u(y) = x× ex × u(x).

• def get_value
Returns the exponential of the silbling.

4.43.2 Member Function Documentation

4.43.2.1 def __init__ (self, right)

Default constructor.

Parameters:

self
right Right silbling of this instance.

Reimplemented from UnaryOperation (p. 287).

4.43.2.2 def equal_debug (self, other)

A method that is only used for serialization checking.

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the instance has the same attribute values as the argument

Reimplemented from UnaryOperation (p. 288).

4.43.2.3 def get_uncertainty (self, component)

Returns the uncertainty of this node. Let the node represent the operation y = ex then
the resulting uncertainty is u(y) = x× ex × u(x).

Parameters:

self
component Another instance of uncertainty.

Returns:

A numeric value, representing the standard uncertainty.

Reimplemented from UncertainComponent (p. 304).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.44 Exp Class Reference 147

4.43.2.4 def get_value (self)

Returns the exponential of the silbling.

Parameters:

self

Returns:

A numeric value, representing the exponential of the silbling.

Reimplemented from UncertainComponent (p. 305).

4.44 Exp Class Reference

Inheritance diagram for Exp::

Exp

CUnaryOperation

CUncertainComponent

4.44.1 Detailed Description

This class models the exponential function ex. x denotes the sibling of this instance.

Public Member Functions

• def get_uncertainty
Get the partial derivate of this component with respect to the given argument.

• def get_value
Get the value of this component.

4.44.2 Member Function Documentation

4.44.2.1 def get_uncertainty (self, x)

Get the partial derivate of this component with respect to the given argument.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.45 Identity Class Reference 148

x The argument of the partial derivation.

Returns:

The partial derivate.

Reimplemented from CUncertainComponent (p. 129).

4.44.2.2 def get_value (self)

Get the value of this component.

Parameters:

self

Returns:

The value of this component.

Reimplemented from CUncertainComponent (p. 129).

4.45 Identity Class Reference

Inheritance diagram for Identity::

Identity

UnitOperator

4.45.1 Detailed Description

This class provides an Interface for the identity Operator.

This class returns all values as are.

Attention:

This class is intendend to be static final. Deriving subclasses makes no sense since
there is only one identity operator. Also Instances of this class should be avoided.
If you need an identity operator reference it from the global IDENTITY object of
this module.

Note:

Instances of this class can be serialized using pickle.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.45 Identity Class Reference 149

Public Member Functions

• def __eq__
Test for equality.

• def __getstate__
Serialization using pickle.

• def __invert__
Invert the current operation.

• def __mul__
Perform the current operation on another operator.

• def __setstate__
Deserialization using pickle.

• def __str__
Represent this operation by a string.

• def convert
Convert a value.

• def is_linear
Check if the Operator is linear.

4.45.2 Member Function Documentation

4.45.2.1 def __eq__ (self, other)

Test for equality.

Parameters:

self
other Another UnitOperator (p. 326).

Reimplemented from UnitOperator (p. 327).

4.45.2.2 def __getstate__ (self)

Serialization using pickle.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.45 Identity Class Reference 150

Returns:

A string that represents the serialized form of this instance.

Reimplemented from UnitOperator (p. 327).

4.45.2.3 def __invert__ (self)

Invert the current operation.

This method returns the inverse Operation of the current operation.

Parameters:

self

Returns:

The inverse Operation of the current Operation.

Warning:

This method is intended to be abstract. You have to override it in order to get any
effect.

Reimplemented from UnitOperator (p. 327).

4.45.2.4 def __mul__ (self, otherOperator)

Perform the current operation on another operator.

This method returns the parameter.

Parameters:

self
otherOperator The other operator to concat.

Returns:

The other Operator.

Reimplemented from UnitOperator (p. 328).

4.45.2.5 def __setstate__ (self, state)

Deserialization using pickle.

Parameters:

self
state The state of the object.

Reimplemented from UnitOperator (p. 328).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.46 Inv Class Reference 151

4.45.2.6 def __str__ (self)

Represent this operation by a string.

Parameters:

self

Returns:

A string describing this operation.

Reimplemented from UnitOperator (p. 328).

4.45.2.7 def convert (self, value)

Convert a value.

This method returns the parameter.

Parameters:

self
value The value to convert (will be returned).

Returns:

The parameter value

Reimplemented from UnitOperator (p. 329).

4.45.2.8 def is_linear (self)

Check if the Operator is linear.

Identity (p. 148) is a linear operator. Thus, this method always returns True.

Parameters:

self

Returns:

True.

Reimplemented from UnitOperator (p. 329).

4.46 Inv Class Reference

Inheritance diagram for Inv::

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.46 Inv Class Reference 152

Inv

CUnaryOperation

CUncertainComponent

4.46.1 Detailed Description

This class models inverting complex values. Let an instance of this class model the
complex value x then this class models 1

x .

Public Member Functions

• def get_uncertainty
Get the partial derivate of this component with respect to the given argument.

• def get_value
Get the value of this component.

4.46.2 Member Function Documentation

4.46.2.1 def get_uncertainty (self, x)

Get the partial derivate of this component with respect to the given argument.

Parameters:

self
x The argument of the partial derivation.

Returns:

The partial derivate.

Reimplemented from CUncertainComponent (p. 129).

4.46.2.2 def get_value (self)

Get the value of this component.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.47 Log Class Reference 153

Returns:

The value of this component.

Reimplemented from CUncertainComponent (p. 129).

4.47 Log Class Reference

Inheritance diagram for Log::

Log

UnaryOperation

UncertainComponent

4.47.1 Detailed Description

This class models the GUM-tree-nodes that take the Natural Logarithm of a silbling.

Public Member Functions

• def __init__
Default constructor.

• def arithmetic_check
Checks for undefined arguments.

• def equal_debug
A method that is only used for serialization checking.

• def get_uncertainty
Returns the uncertainty of this node. Let the node represent the operation y = ln(x)
then the resulting uncertainty is u(y) = 1

x
u(x).

• def get_value
Returns the Natural Logarithm of the silbling.

4.47.2 Member Function Documentation

4.47.2.1 def __init__ (self, right)

Default constructor.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.47 Log Class Reference 154

Parameters:

self
right Right silbling of this instance.

Reimplemented from UnaryOperation (p. 287).

4.47.2.2 def arithmetic_check (self)

Checks for undefined arguments.

Note:

The natural logarithm is not defined for values x ≤ 0.

Parameters:

self

Exceptions:

ArithmeticError If x ≤ 0.

Reimplemented from UncertainComponent (p. 302).

4.47.2.3 def equal_debug (self, other)

A method that is only used for serialization checking.

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the instance has the same attribute values as the argument

Reimplemented from UnaryOperation (p. 288).

4.47.2.4 def get_uncertainty (self, component)

Returns the uncertainty of this node. Let the node represent the operation y = ln(x)
then the resulting uncertainty is u(y) = 1

xu(x).

Parameters:

self
component Another instance of uncertainty.

Returns:

A numeric value, representing the standard uncertainty.

Reimplemented from UncertainComponent (p. 304).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.48 Log Class Reference 155

4.47.2.5 def get_value (self)

Returns the Natural Logarithm of the silbling.

Parameters:

self

Returns:

A numeric value, representing the Natural Logarithm of the silblings.

Reimplemented from UncertainComponent (p. 305).

4.48 Log Class Reference

Inheritance diagram for Log::

Log

CUnaryOperation

CUncertainComponent

4.48.1 Detailed Description

This class models logarithms having a real base. However, the base cannot be uncer-
tain.

Public Member Functions

• def __init__
The default constructor.

• def get_uncertainty
Get the partial derivate of this component with respect to the given argument.

• def get_value
Get the value of this component.

Private Attributes

• __base

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.49 LogOperator Class Reference 156

4.48.2 Member Function Documentation

4.48.2.1 def __init__ (self, sibling, base = numpy.e)

The default constructor.

Parameters:

self
sibling The sibling of this instance.
base The base of the logarithm (must be a real number).

4.48.2.2 def get_uncertainty (self, x)

Get the partial derivate of this component with respect to the given argument.

Returns:

The partial derivate.

Reimplemented from CUncertainComponent (p. 129).

4.48.2.3 def get_value (self)

Get the value of this component.

Parameters:

self

Returns:

The value of this component.

Reimplemented from CUncertainComponent (p. 129).

4.48.3 Member Data Documentation

4.48.3.1 __base [private]

4.49 LogOperator Class Reference

Inheritance diagram for LogOperator::

LogOperator

UnitOperator

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.49 LogOperator Class Reference 157

4.49.1 Detailed Description

This class provides an interface for logarithmic operators.

Note:

Instances of this class can be serialized using pickle.

Public Member Functions

• def __eq__
Test for equality.

• def __getstate__
Serialization using pickle.

• def __init__
Default constructor.

• def __invert__
Invert the current operation.

• def __setstate__
Deserialization using pickle.

• def __str__
Represent this operation by a string.

• def convert
Convert a value.

• def get_base
Get the base of this logarithm.

• def is_linear
Check if this operator is linear.

Private Attributes

• __base__
• __logBase__

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.49 LogOperator Class Reference 158

4.49.2 Member Function Documentation

4.49.2.1 def __eq__ (self, other)

Test for equality.

Parameters:

self
other Another UnitOperator (p. 326).

Reimplemented from UnitOperator (p. 327).

4.49.2.2 def __getstate__ (self)

Serialization using pickle.

Parameters:

self

Returns:

A string that represents the serialized form of this instance.

Reimplemented from UnitOperator (p. 327).

4.49.2.3 def __init__ (self, base)

Default constructor.

Initializes this operator and assigns the base to it.

Parameters:

self
base The base of the logarithm.

4.49.2.4 def __invert__ (self)

Invert the current operation.

This method returns the inverse Operation of the current operation.

Parameters:

self The current instance of this class.

Returns:

The inverse Operation of the current Operation.

Reimplemented from UnitOperator (p. 327).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.49 LogOperator Class Reference 159

4.49.2.5 def __setstate__ (self, state)

Deserialization using pickle.

Parameters:

self
state The state of the object.

Reimplemented from UnitOperator (p. 328).

4.49.2.6 def __str__ (self)

Represent this operation by a string.

Parameters:

self

Returns:

A string describing this operation.

Reimplemented from UnitOperator (p. 328).

4.49.2.7 def convert (self, value)

Convert a value.

This method performs the logarithm on an absolute value.

Attention:

The logarithm for complex values is not defined.

Parameters:

self
value The value to convert.

Exceptions:

TypeError If the argument is a complex number.

Returns:

The converted value

Reimplemented from UnitOperator (p. 329).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.50 Mul Class Reference 160

4.49.2.8 def get_base (self)

Get the base of this logarithm.

This method returns the base of the logarithm.

Parameters:

self

Returns:

The base of the logarithm

4.49.2.9 def is_linear (self)

Check if this operator is linear.

This operator is not linear.

Parameters:

self

Returns:

False

Reimplemented from UnitOperator (p. 329).

4.49.3 Member Data Documentation

4.49.3.1 __base__ [private]

4.49.3.2 __logBase__ [private]

4.50 Mul Class Reference

Inheritance diagram for Mul::

Mul

CBinaryOperation

CUncertainComponent

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.51 Mul Class Reference 161

4.50.1 Detailed Description

This class models multiplying two complex values.

Public Member Functions

• def get_uncertainty
Get the partial derivate of this component with respect to the given argument.

• def get_value
Get the value of this component.

4.50.2 Member Function Documentation

4.50.2.1 def get_uncertainty (self, x)

Get the partial derivate of this component with respect to the given argument.

Parameters:

self
x The argument of the partial derivation.

Returns:

The partial derivate.

Reimplemented from CUncertainComponent (p. 129).

4.50.2.2 def get_value (self)

Get the value of this component.

Parameters:

self

Returns:

The value of this component.

Reimplemented from CUncertainComponent (p. 129).

4.51 Mul Class Reference

Inheritance diagram for Mul::

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.51 Mul Class Reference 162

Mul

BinaryOperation

UncertainComponent

4.51.1 Detailed Description

This class models GUM-tree nodes that multiply two silblings.

Public Member Functions

• def __init__
Default constructor.

• def equal_debug
A method that is only used for serialization checking.

• def get_uncertainty
Returns the uncertainty of this node. Let the node represent the operation y = x1×x2

then the resulting uncertainty is u(y) = x2 × u(x1) + x1 × u(x2).

• def get_value
Returns the product of the silblings assigned.

4.51.2 Member Function Documentation

4.51.2.1 def __init__ (self, left, right)

Default constructor.

Parameters:

self
left Left silbling of this instance.

right Right silbling of this instance.

Reimplemented from BinaryOperation (p. 89).

4.51.2.2 def equal_debug (self, other)

A method that is only used for serialization checking.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.52 MultiplyOperator Class Reference 163

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the instance has the same attribute values as the argument

Reimplemented from BinaryOperation (p. 89).

4.51.2.3 def get_uncertainty (self, component)

Returns the uncertainty of this node. Let the node represent the operation y = x1 × x2

then the resulting uncertainty is u(y) = x2 × u(x1) + x1 × u(x2).

Parameters:

self
component Another instance of uncertainty.

Returns:

A numeric value, representing the standard uncertainty.

Reimplemented from UncertainComponent (p. 304).

4.51.2.4 def get_value (self)

Returns the product of the silblings assigned.

Parameters:

self

Returns:

A numeric value, representing the product of the silblings.

Reimplemented from UncertainComponent (p. 305).

4.52 MultiplyOperator Class Reference

Inheritance diagram for MultiplyOperator::

MultiplyOperator

UnitOperator

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.52 MultiplyOperator Class Reference 164

4.52.1 Detailed Description

This class provides an Interface for factor operators.

This class multiplies a constant with an existing Operator.

Note:

Instances of this class can be serialized using pickle.

Public Member Functions

• def __eq__
Test for equality.

• def __getstate__
Serialization using pickle.

• def __init__
Default constructor.

• def __invert__
Invert the current operation.

• def __mul__
Perform the current operation on another operator.

• def __setstate__
Deserialization using pickle.

• def __str__
Represent this operation by a string.

• def convert
Convert a value.

• def get_factor
Get the factor.

• def is_linear
Check if the operator is linear.

Private Member Functions

• def __isNegative
Helper method to optimize comparsions.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.52 MultiplyOperator Class Reference 165

Private Attributes

• __factor__

4.52.2 Member Function Documentation

4.52.2.1 def __eq__ (self, other)

Test for equality.

Parameters:

self
other Another UnitOperator (p. 326).

Reimplemented from UnitOperator (p. 327).

4.52.2.2 def __getstate__ (self)

Serialization using pickle.

Parameters:

self

Returns:

A string that represents the serialized form of this instance.

Reimplemented from UnitOperator (p. 327).

4.52.2.3 def __init__ (self, factor)

Default constructor.

Initializes this operator and assigns the factor to the current operator.

Parameters:

self
factor The offset of this operator.

4.52.2.4 def __invert__ (self)

Invert the current operation.

For example let this operator be a× f(x) then the inverse is 1
a × f(x).

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.52 MultiplyOperator Class Reference 166

Returns:

The inverse Operation of the current Operation.

Reimplemented from UnitOperator (p. 327).

4.52.2.5 def __isNegative (positvieOp, negativeOp) [private]

Helper method to optimize comparsions.

Parameters:

negativeOp An MultiplyOperator (p. 163).

positvieOp An MultiplyOperator (p. 163).

Returns:

negativeOp.get_factor() == ∼positvieOp.get_factor()
(p.167)

4.52.2.6 def __mul__ (self, otherOperator)

Perform the current operation on another operator.

The current operation (muliplying by a) will be performed on another operator f(x).
So that the new operator is a × g(x). In order to avoid numerical quirks, this method
checks wether the parameter is an instance of a MuliplyOperator. If yes, then only the
factor is updated.

Parameters:

self
otherOperator The other operator to concat.

Returns:

The resulting operator.

Reimplemented from UnitOperator (p. 328).

4.52.2.7 def __setstate__ (self, state)

Deserialization using pickle.

Parameters:

self
state The state of the object.

Reimplemented from UnitOperator (p. 328).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.52 MultiplyOperator Class Reference 167

4.52.2.8 def __str__ (self)

Represent this operation by a string.

Parameters:

self

Returns:

A string describing this operation.

Reimplemented from UnitOperator (p. 328).

4.52.2.9 def convert (self, value)

Convert a value.

This method performs the multiplication with an factor on an absolute value.

Parameters:

self
value The value to convert.

Returns:

The converted value.

Reimplemented from UnitOperator (p. 329).

4.52.2.10 def get_factor (self)

Get the factor.

This method returns the factor of this operator.

Parameters:

self

Returns:

The factor of this operator.

4.52.2.11 def is_linear (self)

Check if the operator is linear.

This operator is linear.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.53 Neg Class Reference 168

Returns:

True

Reimplemented from UnitOperator (p. 329).

4.52.3 Member Data Documentation

4.52.3.1 __factor__ [private]

4.53 Neg Class Reference

Inheritance diagram for Neg::

Neg

UnaryOperation

UncertainComponent

4.53.1 Detailed Description

This class models the unary negation as GUM-tree-element.

Public Member Functions

• def __init__
Default constructor.

• def equal_debug
A method that is only used for serialization checking.

• def get_uncertainty
Returns the uncertainty of this node. Let the node represent the operation y = −x
then the resulting uncertainty is u(y) = −u(x).

• def get_value
Returns the exponential of the silbling.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.53 Neg Class Reference 169

4.53.2 Member Function Documentation

4.53.2.1 def __init__ (self, right)

Default constructor.

Parameters:

self
right Right silbling of this instance.

Reimplemented from UnaryOperation (p. 287).

4.53.2.2 def equal_debug (self, other)

A method that is only used for serialization checking.

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the instance has the same attribute values as the argument

Reimplemented from UnaryOperation (p. 288).

4.53.2.3 def get_uncertainty (self, component)

Returns the uncertainty of this node. Let the node represent the operation y = −x then
the resulting uncertainty is u(y) = −u(x).

Parameters:

self
component Another instance of uncertainty.

Returns:

A numeric value, representing the standard uncertainty.

Reimplemented from UncertainComponent (p. 304).

4.53.2.4 def get_value (self)

Returns the exponential of the silbling.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.54 Neg Class Reference 170

Returns:

A numeric value, representing the negative value of the silbling.

Reimplemented from UncertainComponent (p. 305).

4.54 Neg Class Reference

Inheritance diagram for Neg::

Neg

CUnaryOperation

CUncertainComponent

4.54.1 Detailed Description

This class models taking the negative of a complex value.

Public Member Functions

• def get_uncertainty
Get the partial derivate of this component with respect to the given argument.

• def get_value
Get the value of this component.

4.54.2 Member Function Documentation

4.54.2.1 def get_uncertainty (self, x)

Get the partial derivate of this component with respect to the given argument.

Parameters:

self
x The argument of the partial derivation.

Returns:

The partial derivate.

Reimplemented from CUncertainComponent (p. 129).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.55 NotDimensionlessException Class Reference 171

4.54.2.2 def get_value (self)

Get the value of this component.

Parameters:

self

Returns:

The value of this component.

Reimplemented from CUncertainComponent (p. 129).

4.55 NotDimensionlessException Class Reference

Inheritance diagram for NotDimensionlessException::

NotDimensionlessException

QuantitiesException

4.55.1 Detailed Description

Exception that is raised whenever a a unit is not dimensionless where it has to be.

Public Member Functions

• def __init__
Default constructor.

• def __str__
Returns a string describing this exception.

Private Attributes

• __unit__

4.55.2 Member Function Documentation

4.55.2.1 def __init__ (self, unit, args)

Default constructor.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.56 PhysicalModel Class Reference 172

Parameters:

self
unit Instance of a unit that raised the exception.

args Additional arguments of this exception.

4.55.2.2 def __str__ (self)

Returns a string describing this exception.

Parameters:

self

Returns:

A string that describes the exception.

4.55.3 Member Data Documentation

4.55.3.1 __unit__ [private]

4.56 PhysicalModel Class Reference

Inheritance diagram for PhysicalModel::

PhysicalModel

SIModel

4.56.1 Detailed Description

This class models the abstract interface for physical models.

This class provides an interface for defining physical models. Up to now, the subclasses
do not model relativistic effects. Therefore this interface might be extended in the next
version.

Attention:

This class is only an abstract interface. You will have to override it in order to get
any effect.

See also:

si.SIModel (p. 231)

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.57 Pow Class Reference 173

Public Member Functions

• def __init__
This is the default constructor.

• def get_dimension
Get the pysical dimension that corresponds to the given unit.

4.56.2 Member Function Documentation

4.56.2.1 def __init__ (self)

This is the default constructor.

Parameters:

self

Reimplemented in SIModel (p. 232).

4.56.2.2 def get_dimension (self, unit)

Get the pysical dimension that corresponds to the given unit.

Parameters:

self
unit to check the dimension for.

Returns:

The corresponding physical dimension.

Reimplemented in SIModel (p. 232).

4.57 Pow Class Reference

Inheritance diagram for Pow::

Pow

BinaryOperation

UncertainComponent

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.57 Pow Class Reference 174

4.57.1 Detailed Description

This class models GUM-tree nodes that raise the left silbling to the power of the right
one.

Public Member Functions

• def __init__
Default constructor.

• def equal_debug
A method that is only used for serialization checking.

• def get_uncertainty
Returns the uncertainty of this node. Let the node represent the operation y = xx2

1

then the resulting uncertainty is u(y) = x2×xx2−1
1 ×u(x1)+xx2

1 ×ln(x1)×u(x2).

• def get_value
Returns the power pow(left, right) of the silblings assigned.

4.57.2 Member Function Documentation

4.57.2.1 def __init__ (self, left, right)

Default constructor.

Parameters:

self
left Left silbling of this instance.

right Right silbling of this instance.

Reimplemented from BinaryOperation (p. 89).

4.57.2.2 def equal_debug (self, other)

A method that is only used for serialization checking.

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the instance has the same attribute values as the argument

Reimplemented from BinaryOperation (p. 89).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.58 Pow Class Reference 175

4.57.2.3 def get_uncertainty (self, component)

Returns the uncertainty of this node. Let the node represent the operation y = xx2
1 then

the resulting uncertainty is u(y) = x2 × xx2−1
1 × u(x1) + xx2

1 × ln(x1)× u(x2).

Attention:

The uncertainty is only defined, if x1 > 0 and x1 > 0.

Parameters:

self
component Another instance of uncertainty.

Returns:

A numeric value, representing the standard uncertainty.

Exceptions:

ArithmeticError If x1 ≤ 0 or x2 ≤ 0.

Reimplemented from UncertainComponent (p. 304).

4.57.2.4 def get_value (self)

Returns the power pow(left, right) of the silblings assigned.

Parameters:

self

Returns:

A numeric value, representing the power of the silblings.

Reimplemented from UncertainComponent (p. 305).

4.58 Pow Class Reference

Inheritance diagram for Pow::

Pow

CBinaryOperation

CUncertainComponent

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.59 ProductUnit Class Reference 176

4.58.1 Detailed Description

This class models complex powers.

Public Member Functions

• def get_uncertainty
Get the partial derivate of this component with respect to the given argument.

• def get_value
Get the value of this component.

4.58.2 Member Function Documentation

4.58.2.1 def get_uncertainty (self, x)

Get the partial derivate of this component with respect to the given argument.

Parameters:

self
x The argument of the partial derivation.

Returns:

The partial derivate.

Reimplemented from CUncertainComponent (p. 129).

4.58.2.2 def get_value (self)

Get the value of this component.

Parameters:

self

Returns:

The value of this component.

Reimplemented from CUncertainComponent (p. 129).

4.59 ProductUnit Class Reference

Inheritance diagram for ProductUnit::

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.59 ProductUnit Class Reference 177

ProductUnit

DerivedUnit

Unit

4.59.1 Detailed Description

The unit is a combined unit of the product of the powers of units.

The unit is stored in its canonical form. That is the simplest form. For example [m] :=[
m2

m

]
.

Note:

Instances of this class can be serialized using pickle.

Public Member Functions

• def __div__
Divide two units.

• def __eq__
Checks if two product units are equal.

• def __getstate__
Serialization using pickle.

• def __init__
Default constructor.

• def __setstate__
Deserialization using pickle.

• def __str__
Print the current unit. This function returns a string of the form
factor1∗factor2.

• def get_system_unit
Get the corresponding system unit.

• def get_unit
Returns the unit at the given index.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.59 ProductUnit Class Reference 178

• def get_unitCount
Get the total count of factors of this product unit.

• def get_unitPow
Get the power exponent of a factor at the given index.

• def get_unitRoot
Get the root exponent of a factor at the given index.

• def normalize
This function merge duplicate factors and converts this unit into its canonical form.

• def strip_unit
Return the contained unit of a unit, if it is a product unit, contains only one element,
and has an exponent equal to one.

• def to_system_unit
Get the operator to convert to the system unit. This method concatenates the indi-
vidual operators and returns the joint operator to the system unit, if this unit is not a
system unit.

• def value_of
Factory method for generating product units. Used to compare other units.

Static Public Attributes

• tuple strip_unit = staticmethod(strip_unit)
• tuple value_of = staticmethod(value_of)

Private Member Functions

• def __cloneElements
Return a copy of the sequence of factors.

• def __isSystemUnit
Check if the current unit is a system unit. This product unit is a system unit, if all of
its factors are system units.

Private Attributes

• __elements__

Static Private Attributes

• list __elements__ = []

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.59 ProductUnit Class Reference 179

4.59.2 Member Function Documentation

4.59.2.1 def __cloneElements (self) [private]

Return a copy of the sequence of factors.

Parameters:

self

Returns:

A copy of __elements__.

See also:

self.__elements__

4.59.2.2 def __div__ (self, other)

Divide two units.

Parameters:

self
other A divisor.

See also:

Unit.__div__ (p. 317)

Reimplemented from Unit (p. 317).

4.59.2.3 def __eq__ (self, other)

Checks if two product units are equal.

Parameters:

self
other Unit (p. 314) to compare to

Returns:

True If the units are equal, False if the units are unequal.

Reimplemented from Unit (p. 317).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.59 ProductUnit Class Reference 180

4.59.2.4 def __getstate__ (self)

Serialization using pickle.

Parameters:

self

Returns:

A string that represents the serialized form of this instance.

Reimplemented from Unit (p. 317).

4.59.2.5 def __init__ (self, left = None, right = None)

Default constructor.

Parameters:

self
left A unit to left-multiply.

right A unit to right-multiply.

4.59.2.6 def __isSystemUnit (self) [private]

Check if the current unit is a system unit. This product unit is a system unit, if all of its
factors are system units.

Parameters:

self

Returns:

True if it is a system unit.

4.59.2.7 def __setstate__ (self, state)

Deserialization using pickle.

Parameters:

self
state The state of the object.

Reimplemented from Unit (p. 320).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.59 ProductUnit Class Reference 181

4.59.2.8 def __str__ (self)

Print the current unit. This function returns a string of the form factor1∗factor2.

Parameters:

self

Returns:

A string describing this unit.

See also:

__ProductElement.__str__

Reimplemented from Unit (p. 320).

4.59.2.9 def get_system_unit (self)

Get the corresponding system unit.

If no system unit is found, the unit is formed from the system units of the factors of the
current unit.

Returns:

The corresponding system unit.

Reimplemented from Unit (p. 322).

4.59.2.10 def get_unit (self, index)

Returns the unit at the given index.

Parameters:

self
index Index of the desired unit.

Returns:

The unit at index.

4.59.2.11 def get_unitCount (self)

Get the total count of factors of this product unit.

Parameters:

self

Returns:

The number of factors.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.59 ProductUnit Class Reference 182

4.59.2.12 def get_unitPow (self, index)

Get the power exponent of a factor at the given index.

Attention:

Since roots are rational, you have to call get_unitPow and get_unitRoot
in order to obtain the complete exponent of this unit. For example for

√
m3 the

results would be 3 for get_unitPow and 2 for get_unitRoot.

Parameters:

self
index Index of the desired unit.

Returns:

The (integer) power of the current unit

4.59.2.13 def get_unitRoot (self, index)

Get the root exponent of a factor at the given index.

Attention:

Since roots are rational, you have to call get_unitPow and get_unitRoot
in order to obtain the complete exponent of this unit. For example for

√
m3 the

results would be 3 for get_unitPow and 2 for get_unitRoot.

Parameters:

self
index Index of the desired unit.

Returns:

The (integer) root of the current unit

4.59.2.14 def normalize (self)

This function merge duplicate factors and converts this unit into its canonical form.

Parameters:

self

4.59.2.15 def strip_unit (unit)

Return the contained unit of a unit, if it is a product unit, contains only one element,
and has an exponent equal to one.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.59 ProductUnit Class Reference 183

4.59.2.16 def to_system_unit (self)

Get the operator to convert to the system unit. This method concatenates the individual
operators and returns the joint operator to the system unit, if this unit is not a system
unit.

Returns:

The operator to the system unit.

Exceptions:

qexceptions.ConversionException (p. 108) If one of the system units is formed
using a non linear operator, or if a factor has a rational exponent.

Reimplemented from Unit (p. 324).

4.59.2.17 def value_of (unit)

Factory method for generating product units. Used to compare other units.

Parameters:

unit A unit.

Returns:

The argument, if it is a product unit, or a new instance of ProductUnit (p. 176) if
the argument is not a product unit.

4.59.3 Member Data Documentation

4.59.3.1 __elements__ [private]

4.59.3.2 list __elements__ = [] [static, private]

The factors forming the product unit.

See also:

__ProductElement__ (p. 41)

4.59.3.3 tuple strip_unit = staticmethod(strip_unit) [static]

4.59.3.4 tuple value_of = staticmethod(value_of) [static]

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.60 QuantitiesException Class Reference 184

4.60 QuantitiesException Class Reference

Inheritance diagram for QuantitiesException::

QuantitiesException

ConversionException NotDimensionlessException UnitExistsException UnknownUnitException

4.60.1 Detailed Description

General class for qexceptions of this module.

Public Member Functions

• def __init__
Default constructor.

4.60.2 Member Function Documentation

4.60.2.1 def __init__ (self, args)

Default constructor.

Parameters:

self
args Arguments of this exception

4.61 Quantity Class Reference

4.61.1 Detailed Description

Base class that provides an interface to model quantities.

Note:

The numeric types (i.e. int, float, long, complex, and arithmetic.Rational-
Number (p. 210)) are automatically transformed to an dimensionless quantity if
the operations are performed on them. This also applies if a quantity is the right
operand of the numeric types stated above.
Instances of this class can be serialized using pickle.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.61 Quantity Class Reference 185

Public Member Functions

• def __abs__
Get the absolute value of this Quantity (p. 184).

• def __add__
Get the sum of another instance of Quantity (p. 184) and this instance.

• def __cmp__
Compare two instances of quantity.

• def __coerce__
Implementation of coercion rules.

• def __complex__
Cast this instance to the numeric type complex.

• def __div__
Get the fraction of another instance of Quantity (p. 184) and this instance.

• def __eq__
Check, if this instance is equal to the argument. A comparsion will be done, if the
units are comparable.

• def __float__
Cast this instance to the numeric type float.

• def __ge__
Check, if this instance is greater or equal to the argument. A comparsion will be done,
if the units are comparable.

• def __getstate__
Serialization using pickle.

• def __gt__
Check, if this instance is greater than the argument. A comparsion will be done, if the
units are comparable.

• def __iadd__
Add the argument to this instance.

• def __idiv__
Divide this instance by the argument.

• def __imul__
Multiply this instance with the argument.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.61 Quantity Class Reference 186

• def __init__
Default constructor.

• def __int__
Cast this instance to the numeric type int.

• def __invert__
Return the inverted instance of this Quantity (p. 184). For example, let your quantity
be 1

2
m
s

, then the result of this operation is 2 s
m

.

• def __ipow__
Raise the this instance to the argument.

• def __isub__
Substract the argument from this instance.

• def __le__
Check, if this instance is less or equal to the argument. A comparsion will be done, if
the units are comparable.

• def __long__
Cast this instance to the numeric type long.

• def __lt__
Check, if this instance is less than the argument. A comparsion will be done, if the
units are comparable.

• def __mul__
Get the product of another instance of Quantity (p. 184) and this instance.

• def __ne__
Check, if this instance is not equal to the argument. A comparsion will be done, if the
units are comparable.

• def __neg__
Negate the value of this quantity.

• def __pos__
Copy this instance.

• def __pow__
Get the power of of this instance.

• def __radd__
Get the sum of this instance of Quantity (p. 184) and another value.

• def __rdiv__

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.61 Quantity Class Reference 187

Get the fraction of another value and this instance.

• def __rmul__
Get the product of this instance of Quantity (p. 184) and another value.

• def __rpow__
Get the power of another value and this instance.

• def __rsub__
Get the difference of another value and this instance of Quantity (p. 184).

• def __setstate__
Deserialization using pickle.

• def __str__
Get a string describing this Quantity (p. 184). The result will be of the form value
unit (i.e. "12.0 m").

• def __sub__
Get the difference of another instance of Quantity (p. 184) and this instance.

• def arccos
This method provides the broadcast interface for numpy.arccos.

• def arccosh
This method provides the broadcast interface for numpy.arccosh.

• def arcsin
This method provides the broadcast interface for numpy.arcsin.

• def arcsinh
This method provides the broadcast interface for numpy.arcsinh.

• def arctan
This method provides the broadcast interface for numpy.arctan.

• def arctan2
This method provides the broadcast interface for numpy.arctan2.

• def arctanh
This method provides the broadcast interface for numpy.arctanh.

• def ceil
This method provides the broadcast interface for numpy.ceil.

• def conjugate

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.61 Quantity Class Reference 188

This method provides the broadcast interface for numpy.conjugate.

• def cos
This method provides the broadcast interface for numpy.cos.

• def cosh
This method provides the broadcast interface for numpy.cosh.

• def exp
This method provides the broadcast interface for numpy.exp.

• def fabs
This method provides the broadcast interface for numpy.fabs.

• def floor
This method provides the broadcast interface for numpy.floor.

• def get_default_unit
Get the unit that is used commonly for this quantity.

• def get_value
Get the absolute value of the quantity using the specified unit.

• def hypot
This method provides the broadcast interface for numpy.arctan2.

• def is_dimensionless
Check if this quantity is dimensionless.

• def is_strict
Get the type of quantities calculation. If either strict or non strict evaluation of quan-
tities is implemented.

• def log
This method provides the broadcast interface for numpy.log.

• def log10
This method provides the broadcast interface for numpy.log10.

• def log2
This method provides the broadcast interface for numpy.log2.

• def set_strict
Turn on/off the strict evaluation of quantities. This will affect any quantities calcula-
tion beyond this point.

• def sin

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.61 Quantity Class Reference 189

This method provides the broadcast interface for numpy.sin.

• def sinh
This method provides the broadcast interface for numpy.sinh.

• def sqrt
This method provides the broadcast interface for numpy.sqrt.

• def square
This method provides the broadcast interface for numpy.sqrt.

• def tan
This method provides the broadcast interface for numpy.tan.

• def tanh
This method provides the broadcast interface for numpy.tanh.

• def value_of
Factory for generating quantities.

Static Public Attributes

• tuple is_strict = staticmethod(is_strict)
• tuple set_strict = staticmethod(set_strict)
• tuple value_of = staticmethod(value_of)

Private Member Functions

• def __accuracy
Helper method, to increase the accuracy of integer operations. As soon an int or long
is provided, it is converted to a rational number.

• def __unitComparsion
Helper method.

Private Attributes

• __unit__
• __value__

Static Private Attributes

• tuple __accuracy = staticmethod(__accuracy)
• __STRICT = True
• tuple __unitComparsion = staticmethod(__unitComparsion)

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.61 Quantity Class Reference 190

4.61.2 Member Function Documentation

4.61.2.1 def __abs__ (self)

Get the absolute value of this Quantity (p. 184).

Parameters:

self

Returns:

The absolute value of this quantity.

4.61.2.2 def __accuracy (value) [private]

Helper method, to increase the accuracy of integer operations. As soon an int or long
is provided, it is converted to a rational number.

Parameters:

value The value to be converted.

4.61.2.3 def __add__ (self, other)

Get the sum of another instance of Quantity (p. 184) and this instance.

Parameters:

self
other Another instance of Quantity (p. 184) or numeric value.

Returns:

A new instance of Quantity (p. 184) representing the sum of both quantities.

Exceptions:

qexceptions.ConversionException (p. 108) If the units are not comparable.

4.61.2.4 def __cmp__ (self, other)

Compare two instances of quantity.

Parameters:

self
other Another instance of Quantity (p. 184) or numeric value.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.61 Quantity Class Reference 191

Returns:

-1, if the this instance is less than the argument, 0, if this instance is equal to the
argument, +1, if this instance is greater than the argument.

Exceptions:

qexceptions.ConversionException (p. 108) If the units are not comparable.

4.61.2.5 def __coerce__ (self, other)

Implementation of coercion rules.

See also:

Coercion - The page describing the coercion rules.

4.61.2.6 def __complex__ (self)

Cast this instance to the numeric type complex.

Attention:

All information about the unit used will be stripped from the result.

Parameters:

self

Returns:

The value of this instance casted to complex.

4.61.2.7 def __div__ (self, other)

Get the fraction of another instance of Quantity (p. 184) and this instance.

Attention:

This method performs no conversion of alternate units: Even if the units are de-
fined in the same dimension. For example, if one takes m ÷ ft the result will be
ft
m not dimensionless.

Parameters:

self The dividend.

other Another instance of Quantity (p. 184) or numeric value used as divisor.

Returns:

A new instance of Quantity (p. 184) representing the sum of both quantities.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.61 Quantity Class Reference 192

4.61.2.8 def __eq__ (self, other)

Check, if this instance is equal to the argument. A comparsion will be done, if the units
are comparable.

Parameters:

self
other Another instance of Quantity (p. 184).

Returns:

True, if this instance is equal to the argument.

4.61.2.9 def __float__ (self)

Cast this instance to the numeric type float.

Attention:

All information about the unit used will be stripped from the result.
This conversion is only possible, if weak consitency checking is enabled.

Parameters:

self

Returns:

The value of this instance casted to float.

4.61.2.10 def __ge__ (self, other)

Check, if this instance is greater or equal to the argument. A comparsion will be done,
if the units are comparable.

Parameters:

self
other Another instance of Quantity (p. 184).

Returns:

True, if this instance is greater or equal to the argument.

Exceptions:

qexceptions.ConversionException (p. 108) If the units are not comparable.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.61 Quantity Class Reference 193

4.61.2.11 def __getstate__ (self)

Serialization using pickle.

Parameters:

self

Returns:

A string that represents the serialized form of this instance.

4.61.2.12 def __gt__ (self, other)

Check, if this instance is greater than the argument. A comparsion will be done, if the
units are comparable.

Parameters:

self
other Another instance of Quantity (p. 184).

Returns:

True, if this instance is greater than the argument.

Exceptions:

qexceptions.ConversionException (p. 108) If the units are not comparable.

4.61.2.13 def __iadd__ (self, other)

Add the argument to this instance.

Parameters:

self
other Another instance of Quantity (p. 184) or numeric value.

Exceptions:

qexceptions.ConversionException (p. 108) If the units are not comparable.

4.61.2.14 def __idiv__ (self, other)

Divide this instance by the argument.

Parameters:

self
other Another instance of Quantity (p. 184) or numeric value..

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.61 Quantity Class Reference 194

4.61.2.15 def __imul__ (self, other)

Multiply this instance with the argument.

Parameters:

self
other Another instance of Quantity (p. 184) or numeric value.

4.61.2.16 def __init__ (self, unit, value)

Default constructor.

Parameters:

self The current instance of this class.

unit The corresponding unit.

value The value assigned

Note:

You may use numeric values, sequence types, and instances of
ucomponents.UncertainInput (p. 309) as values.

See also:

units.Unit (p. 314)
units.Dimensions

4.61.2.17 def __int__ (self)

Cast this instance to the numeric type int.

Attention:

All information about the unit used will be stripped from the result.

Parameters:

self

Returns:

The value of this instance casted to int.

4.61.2.18 def __invert__ (self)

Return the inverted instance of this Quantity (p. 184). For example, let your quantity
be 1

2
m
s , then the result of this operation is 2 s

m .

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.61 Quantity Class Reference 195

Parameters:

self

Returns:

The inverted quantity.

4.61.2.19 def __ipow__ (self, other)

Raise the this instance to the argument.

Parameters:

self
other Another instance of Quantity (p. 184) or numeric value.

4.61.2.20 def __isub__ (self, other)

Substract the argument from this instance.

Parameters:

self
other Another instance of Quantity (p. 184) or numeric value.

Exceptions:

qexceptions.ConversionException (p. 108) If the units are not comparable.

4.61.2.21 def __le__ (self, other)

Check, if this instance is less or equal to the argument. A comparsion will be done, if
the units are comparable.

Parameters:

self
other Another instance of Quantity (p. 184).

Returns:

True, if this instance is less or equal to the argument.

Exceptions:

qexceptions.ConversionException (p. 108) If the units are not comparable.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.61 Quantity Class Reference 196

4.61.2.22 def __long__ (self)

Cast this instance to the numeric type long.

Attention:

All information about the unit used will be stripped from the result.

Parameters:

self

Returns:

The value of this instance casted to long.

4.61.2.23 def __lt__ (self, other)

Check, if this instance is less than the argument. A comparsion will be done, if the
units are comparable.

Parameters:

self
other Another instance of Quantity (p. 184).

Returns:

True, if this instance is less than the argument.

Exceptions:

qexceptions.ConversionException (p. 108) If the units are not comparable.

4.61.2.24 def __mul__ (self, other)

Get the product of another instance of Quantity (p. 184) and this instance.

Attention:

This method performs no conversion of alternate units: Even if the units are de-
fined in the same dimension. For example, if one takes m × ft the result will be
ftm not m2 nor ft2.

Parameters:

self
other Another instance of Quantity (p. 184) or numeric value.

Returns:

A new instance of Quantity (p. 184) representing the product of both quantities.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.61 Quantity Class Reference 197

4.61.2.25 def __ne__ (self, other)

Check, if this instance is not equal to the argument. A comparsion will be done, if the
units are comparable.

Parameters:

self
other Another instance of Quantity (p. 184).

Returns:

True, if this instance is not equal to the argument.

4.61.2.26 def __neg__ (self)

Negate the value of this quantity.

Parameters:

self

Returns:

A new instance of Quantity (p. 184) representing the negative of this quantity.

4.61.2.27 def __pos__ (self)

Copy this instance.

Parameters:

self

Returns:

A copy of the current instance.

4.61.2.28 def __pow__ (self, other)

Get the power of of this instance.

Parameters:

self
other The power to which this instance is raised (must be an integer or dimen-

sionless quantity).

Returns:

A new instance of Quantity (p. 184) representing the power of this instance.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.61 Quantity Class Reference 198

Exceptions:

qexceptions.ConversionException (p. 108) If a quantity argument is not dimen-
sionless.

See also:

units.Unit.__pow__ (p. 319)

4.61.2.29 def __radd__ (self, other)

Get the sum of this instance of Quantity (p. 184) and another value.

Attention:

This library assumes that this is a commutative operation.

Parameters:

self
other Another value (not an instance of Quantity (p. 184)).

Returns:

A new instance of Quantity (p. 184) representing the sum.

Exceptions:

qexceptions.ConversionException (p. 108) If the units are not comparable.

4.61.2.30 def __rdiv__ (self, other)

Get the fraction of another value and this instance.

Parameters:

self The divisor.

other Another instance of Quantity (p. 184) or numeric value used as dividend.

Returns:

A new instance of Quantity (p. 184) representing the sum of both quantities.

4.61.2.31 def __rmul__ (self, other)

Get the product of this instance of Quantity (p. 184) and another value.

Attention:

This library assumes that this is a commutative operation.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.61 Quantity Class Reference 199

Parameters:

self
other Another value (not an instance of Quantity (p. 184)).

Returns:

A new instance of Quantity (p. 184) representing the product of both quantities.

4.61.2.32 def __rpow__ (self, other)

Get the power of another value and this instance.

Attention:

In contrast to Quantity.__pow__ (p. 197) this instance also accepts floating point
powers.

Parameters:

self
other Another instance of Quantity (p. 184).

Returns:

A new instance of Quantity (p. 184) representing the sum of both quantities.

Exceptions:

qexceptions.ConversionException (p. 108) If this unit is not comparable to
units.ONE (p. 23).

4.61.2.33 def __rsub__ (self, other)

Get the difference of another value and this instance of Quantity (p. 184).

Parameters:

self
other Another value (not an instance of Quantity (p. 184)).

Returns:

A new instance of Quantity (p. 184) representing the difference of both quantities.

Exceptions:

qexceptions.ConversionException (p. 108) If the units are not comparable.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.61 Quantity Class Reference 200

4.61.2.34 def __setstate__ (self, state)

Deserialization using pickle.

Parameters:

self
state The state of the object.

4.61.2.35 def __str__ (self)

Get a string describing this Quantity (p. 184). The result will be of the form value
unit (i.e. "12.0 m").

Parameters:

self

Returns:

A string describing this quantity.

4.61.2.36 def __sub__ (self, other)

Get the difference of another instance of Quantity (p. 184) and this instance.

Parameters:

self
other Another instance of Quantity (p. 184).

Returns:

A new instance of Quantity (p. 184) representing the difference of both quantities.

Exceptions:

qexceptions.ConversionException (p. 108) If the units are not comparable.

4.61.2.37 def __unitComparsion (unit1, unit2) [private]

Helper method.

Parameters:

unit1 A unit.
unit2 Another unit.

Returns:

True if they are compatible and strict is disabled or True if they are equal and strict
is enabled.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.61 Quantity Class Reference 201

4.61.2.38 def arccos (self)

This method provides the broadcast interface for numpy.arccos.

Parameters:

self

Returns:

The inverse Cosine of this quantity.

Exceptions:

qexceptions.NotDimensionlessException (p. 171) If the unit assigned is not di-
mensionless.

4.61.2.39 def arccosh (self)

This method provides the broadcast interface for numpy.arccosh.

Parameters:

self

Returns:

The inverse hyperbolic Cosine of this quantity.

Exceptions:

qexceptions.NotDimensionlessException (p. 171) If the unit assigned is not di-
mensionless.

4.61.2.40 def arcsin (self)

This method provides the broadcast interface for numpy.arcsin.

Parameters:

self

Returns:

The inverse Sine of this quantity.

Exceptions:

qexceptions.NotDimensionlessException (p. 171) If the unit assigned is not di-
mensionless.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.61 Quantity Class Reference 202

4.61.2.41 def arcsinh (self)

This method provides the broadcast interface for numpy.arcsinh.

Parameters:

self

Returns:

The inverse hyperbolic Sine of this quantity.

Exceptions:

qexceptions.NotDimensionlessException (p. 171) If the unit assigned is not di-
mensionless.

4.61.2.42 def arctan (self)

This method provides the broadcast interface for numpy.arctan.

Parameters:

self

Returns:

The inverse Tangent of this quantity.

Exceptions:

qexceptions.NotDimensionlessException (p. 171) If the unit assigned is not di-
mensionless.

4.61.2.43 def arctan2 (self, other)

This method provides the broadcast interface for numpy.arctan2.

Parameters:

self
other Another instance of Quantity (p. 184).

Returns:

The inverse two-argument tangent of the arguments.

Exceptions:

qexceptions.NotDimensionlessException (p. 171) If the unit assigned is not di-
mensionless.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.61 Quantity Class Reference 203

4.61.2.44 def arctanh (self)

This method provides the broadcast interface for numpy.arctanh.

Parameters:

self

Returns:

The inverse hyperbolic Tangent of this quantity.

Exceptions:

qexceptions.NotDimensionlessException (p. 171) If the unit assigned is not di-
mensionless.

4.61.2.45 def ceil (self)

This method provides the broadcast interface for numpy.ceil.

Parameters:

self

Returns:

The largest integer greater than or equal to this quantity.

4.61.2.46 def conjugate (self)

This method provides the broadcast interface for numpy.conjugate.

Parameters:

self

Returns:

This quantity.

4.61.2.47 def cos (self)

This method provides the broadcast interface for numpy.cos.

Parameters:

self

Returns:

The Cosine of this quantity.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.61 Quantity Class Reference 204

Exceptions:

qexceptions.NotDimensionlessException (p. 171) If the unit assigned is not di-
mensionless.

4.61.2.48 def cosh (self)

This method provides the broadcast interface for numpy.cosh.

Parameters:

self

Returns:

The hyperbolic Cosine of this quantity.

Exceptions:

qexceptions.NotDimensionlessException (p. 171) If the unit assigned is not di-
mensionless.

4.61.2.49 def exp (self)

This method provides the broadcast interface for numpy.exp.

Parameters:

self

Returns:

The Exponential of this quantity.

Exceptions:

qexceptions.NotDimensionlessException (p. 171) If the unit assigned is not di-
mensionless.

4.61.2.50 def fabs (self)

This method provides the broadcast interface for numpy.fabs.

Parameters:

self

Returns:

The absolute value of this quantity.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.61 Quantity Class Reference 205

4.61.2.51 def floor (self)

This method provides the broadcast interface for numpy.floor.

Parameters:

self

Returns:

The largest integer less than or equal to this quantity.

4.61.2.52 def get_default_unit (self)

Get the unit that is used commonly for this quantity.

Parameters:

self The current instance of this class.

Returns:

The corresponding unit.

4.61.2.53 def get_value (self, unit)

Get the absolute value of the quantity using the specified unit.

Parameters:

self The current instance of this class.
unit The unit in which the quantity should be expressed in.

Returns:

The absolute value of the quantity.

Exceptions:

qexceptions.ConversionException (p. 108) If the units are not comparable.

4.61.2.54 def hypot (self, other)

This method provides the broadcast interface for numpy.arctan2.

Parameters:

self
other Another instance of Quantity (p. 184).

Returns:

The hypothenusis of the arguments.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.61 Quantity Class Reference 206

4.61.2.55 def is_dimensionless (self)

Check if this quantity is dimensionless.

Parameters:

self

Returns:

True, if the unit assigned is comparable to units.ONE (p. 23).

4.61.2.56 def is_strict ()

Get the type of quantities calculation. If either strict or non strict evaluation of quanti-
ties is implemented.

Returns:

True (i.e. strict enabled) or False (i.e. strict disabled).

4.61.2.57 def log (self)

This method provides the broadcast interface for numpy.log.

Parameters:

self

Returns:

The Natural Logarithm of this quantity.

Exceptions:

qexceptions.NotDimensionlessException (p. 171) If the unit assigned is not di-
mensionless.

4.61.2.58 def log10 (self)

This method provides the broadcast interface for numpy.log10.

Parameters:

self

Returns:

The decadic Logarithm of this quantity.

Exceptions:

qexceptions.NotDimensionlessException (p. 171) If the unit assigned is not di-
mensionless.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.61 Quantity Class Reference 207

4.61.2.59 def log2 (self)

This method provides the broadcast interface for numpy.log2.

Parameters:

self

Returns:

The binary logarithm of this quantity.

Exceptions:

qexceptions.NotDimensionlessException (p. 171) If the unit assigned is not di-
mensionless.

4.61.2.60 def set_strict (bValue = True)

Turn on/off the strict evaluation of quantities. This will affect any quantities calculation
beyond this point.

Parameters:

bValue True or False

4.61.2.61 def sin (self)

This method provides the broadcast interface for numpy.sin.

Parameters:

self

Returns:

The Sine of this quantity.

Exceptions:

qexceptions.NotDimensionlessException (p. 171) If the unit assigned is not di-
mensionless.

4.61.2.62 def sinh (self)

This method provides the broadcast interface for numpy.sinh.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.61 Quantity Class Reference 208

Returns:

The hyperbolic Sine of this quantity.

Exceptions:

qexceptions.NotDimensionlessException (p. 171) If the unit assigned is not di-
mensionless.

4.61.2.63 def sqrt (self)

This method provides the broadcast interface for numpy.sqrt.

Parameters:

self

Returns:

The Square Root of this quantity.

4.61.2.64 def square (self)

This method provides the broadcast interface for numpy.sqrt.

Parameters:

self

Returns:

The Square Root of this quantity.

4.61.2.65 def tan (self)

This method provides the broadcast interface for numpy.tan.

Parameters:

self

Returns:

The Tangent of this quantity.

Exceptions:

qexceptions.NotDimensionlessException (p. 171) If the unit assigned is not di-
mensionless.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.61 Quantity Class Reference 209

4.61.2.66 def tanh (self)

This method provides the broadcast interface for numpy.tanh.

Parameters:

self

Returns:

The hyperbolic Tangent of this quantity.

Exceptions:

qexceptions.NotDimensionlessException (p. 171) If the unit assigned is not di-
mensionless.

4.61.2.67 def value_of (other)

Factory for generating quantities.

Parameters:

other A quantity, or another value.

Returns:

A Quantity (p. 184). If the argument is a quantity this method returns it. If the ar-
gument is a numeric value, this method generates a dimensionless quantity having
the argument as value.

Note:

You may use numeric values, sequence types, and instances of
ucomponents.UncertainInput (p. 309) as values.

4.61.3 Member Data Documentation

4.61.3.1 tuple __accuracy = staticmethod(__accuracy) [static,
private]

4.61.3.2 __STRICT = True [static, private]

4.61.3.3 __unit__ [private]

4.61.3.4 tuple __unitComparsion = staticmethod(__unitComparsion)
[static, private]

4.61.3.5 __value__ [private]

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.62 RationalNumber Class Reference 210

4.61.3.6 tuple is_strict = staticmethod(is_strict) [static]

4.61.3.7 tuple set_strict = staticmethod(set_strict) [static]

4.61.3.8 tuple value_of = staticmethod(value_of) [static]

4.62 RationalNumber Class Reference

4.62.1 Detailed Description

This class provides support for rational numbers.

Attention:

This class emulates the behaviour of rational numbers. If the overloaded emulation
methods have an unknown number type, they fall back to floating point operations.

Note:

Instances of this class can be serialized using pickle.

See also:

RationalNumber.__float__ (p. 216)

Public Member Functions

• def __abs__
This method returns the absolute value of this instance.

• def __add__
Add a number and return the result.

• def __cmp__
Compares this instance to another number.

• def __coerce__
Implementation of coercion rules.

• def __complex__
Cast this rational number to a complex number.

• def __div__
Divide by another number and return the result.

• def __eq__

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.62 RationalNumber Class Reference 211

Checks if this instance is equal to a number.

• def __float__
Cast this rational number to a floating point number.

• def __ge__
Checks if this instance is greater or equal to another number.

• def __getstate__
Serialization using pickle.

• def __gt__
Checks if this instance is greater than another number.

• def __init__
Default constructor.

• def __int__
Cast this rational number to an integer.
Exceptions:

OverflowError If the conversion raises an integer overflow.

• def __invert__
This method returns a new rational number that swapped dividend and divsor of this
instance.

• def __le__
Checks if this instance is less or equal to another number.

• def __long__
Cast this rational number to a long integer.

• def __lt__
Checks if this instance is less than another number.

• def __mul__
Multiply a number and return the result.

• def __ne__
Checks if this instance unequal to another number.

• def __neg__
This method returns the negative of this instance.

• def __nonzero__
Check if this instance is nonzero.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.62 RationalNumber Class Reference 212

• def __pos__
This method returns a copy of this instance.

• def __pow__
Raise this rational number to the given power and return the result.

• def __radd__
Left addition of a numeric value.

• def __rdiv__
Right division of a numeric value.

• def __rmul__
Right multiplication of a numeric value.

• def __rpow__
Raise another value to the power of this rational number. the result.

• def __rsub__
Right substraction of a numeric value.

• def __setstate__
Deserialization using pickle.

• def __str__
This method returns a string representing this rational number.

• def __sub__
Substract a number and return the result.

• def arccos
This method provides the broadcast interface for numpy.arccos.

• def arccosh
This method provides the broadcast interface for numpy.arccosh.

• def arcsin
This method provides the broadcast interface for numpy.arcsin.

• def arcsinh
This method provides the broadcast interface for numpy.arcsinh.

• def arctan
This method provides the broadcast interface for numpy.arctan.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.62 RationalNumber Class Reference 213

• def arctan2
This method provides the broadcast interface for numpy.arctan2.

• def arctanh
This method provides the broadcast interface for numpy.arctanh.

• def ceil
This method provides the broadcast interface for numpy.ceil.

• def conjugate
This method provides the broadcast interface for numpy.conjugate.

• def cos
This method provides the broadcast interface for numpy.cos.

• def cosh
This method provides the broadcast interface for numpy.cosh.

• def exp
This method provides the broadcast interface for numpy.exp.

• def fabs
This method provides the broadcast interface for numpy.fabs.

• def floor
This method provides the broadcast interface for numpy.floor.

• def fmod
This method provides the broadcast interface for numpy.fmod.

• def get_dividend
Returns the dividend of this instance.

• def get_divisor
Returns the divisor of this instance.

• def hypot
This method provides the broadcast interface for numpy.hypot.

• def is_integer
Check wether this instance could be be casted to long accurately.

• def log
This method provides the broadcast interface for numpy.log.

• def log10

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.62 RationalNumber Class Reference 214

This method provides the broadcast interface for numpy.log10.

• def log2
This method provides the broadcast interface for numpy.log2.

• def normalize
This method maintains the canonical form of this rational number and avoids negative
divisors.

• def sin
This method provides the broadcast interface for numpy.sin.

• def sinh
This method provides the broadcast interface for numpy.sinh.

• def sqrt
This method provides the broadcast interface for numpy.sqrt.

• def square
This method provides the broadcast interface for numpy.square.

• def tan
This method provides the broadcast interface for numpy.tan.

• def tanh
This method provides the broadcast interface for numpy.tanh.

• def value_of
Factory for generating Rationalnumbers.

Static Public Attributes

• tuple value_of = staticmethod(value_of)

Private Attributes

• __dividend__
• __divisor__

4.62.2 Member Function Documentation

4.62.2.1 def __abs__ (self)

This method returns the absolute value of this instance.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.62 RationalNumber Class Reference 215

Parameters:

self

Returns:

A new rational number.

4.62.2.2 def __add__ (self, value)

Add a number and return the result.

Parameters:

self
value The number to add.

Returns:

The sum of this instance and the argument.

4.62.2.3 def __cmp__ (self, value)

Compares this instance to another number.

Parameters:

self
value The value to compare to.

Returns:

-1: if this instance is less...; +1: if this is greater than the argument; 0 otherwise

4.62.2.4 def __coerce__ (self, other)

Implementation of coercion rules.

See also:

Coercion - The page describing the coercion rules.

4.62.2.5 def __complex__ (self)

Cast this rational number to a complex number.

Parameters:

self

Returns:

A complex number, having a zero imaginary part.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.62 RationalNumber Class Reference 216

4.62.2.6 def __div__ (self, value)

Divide by another number and return the result.

Parameters:

self
value A number.

Returns:

The fraction of this instance and the number.

4.62.2.7 def __eq__ (self, value)

Checks if this instance is equal to a number.

Parameters:

self
value The value to compare to.

Returns:

If this rational number is equal to the argument.

4.62.2.8 def __float__ (self)

Cast this rational number to a floating point number.

Parameters:

self

Returns:

An integer.

4.62.2.9 def __ge__ (self, value)

Checks if this instance is greater or equal to another number.

Parameters:

self
value The value to compare to.

Returns:

True, if this rational number is greater or equal to the argument.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.62 RationalNumber Class Reference 217

4.62.2.10 def __getstate__ (self)

Serialization using pickle.

Parameters:

self

Returns:

A string that represents the serialized form of this instance.

4.62.2.11 def __gt__ (self, value)

Checks if this instance is greater than another number.

Parameters:

self
value The value to compare to.

Returns:

True, if this rational number is greater than the argument.

4.62.2.12 def __init__ (self, dividend, divisor = 1L)

Default constructor.

This initializes the rational number.

Parameters:

self
dividend An integer representing the dividend of this rational number.
divisor An integer representing the divisor of this rational number. If this param-

eter is obmitted it is initialized to 1.

4.62.2.13 def __int__ (self)

Cast this rational number to an integer.

Exceptions:

OverflowError If the conversion raises an integer overflow.

Parameters:

self

Returns:

An integer.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.62 RationalNumber Class Reference 218

4.62.2.14 def __invert__ (self)

This method returns a new rational number that swapped dividend and divsor of this
instance.

Parameters:

self

Returns:

A new rational number.

4.62.2.15 def __le__ (self, value)

Checks if this instance is less or equal to another number.

Parameters:

self
value The value to compare to.

Returns:

True, if this rational number is less or equal to the argument.

4.62.2.16 def __long__ (self)

Cast this rational number to a long integer.

Parameters:

self

Returns:

An integer.

4.62.2.17 def __lt__ (self, value)

Checks if this instance is less than another number.

Parameters:

self
value The value to compare to.

Returns:

True, if this rational number is less than the argument.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.62 RationalNumber Class Reference 219

4.62.2.18 def __mul__ (self, value)

Multiply a number and return the result.

Parameters:

self
value The number to multiply.

Returns:

The product of this instance and the argument.

4.62.2.19 def __ne__ (self, value)

Checks if this instance unequal to another number.

Parameters:

self
value The value to compare to.

Returns:

True, if this rational number unequal to the argument.

4.62.2.20 def __neg__ (self)

This method returns the negative of this instance.

Parameters:

self

Returns:

A new rational number.

4.62.2.21 def __nonzero__ (self)

Check if this instance is nonzero.

Parameters:

self

Returns:

True, if the dividend is nonzero.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.62 RationalNumber Class Reference 220

4.62.2.22 def __pos__ (self)

This method returns a copy of this instance.

Parameters:

self

Returns:

A new rational number.

4.62.2.23 def __pow__ (self, value)

Raise this rational number to the given power and return the result.

Attention:

If the argument is a floating point number then a floating point number will be
returned. Note that this may result in a loss of accuracy.

Parameters:

self
value A numeric value representing the power.

Returns:

A new rational number representing power of this instance.

4.62.2.24 def __radd__ (self, value)

Left addition of a numeric value.

Parameters:

self
value A value to left from this instance.

4.62.2.25 def __rdiv__ (self, value)

Right division of a numeric value.

Parameters:

self
value A value to left from this instance.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.62 RationalNumber Class Reference 221

4.62.2.26 def __rmul__ (self, value)

Right multiplication of a numeric value.

Parameters:

self
value A value to left from this instance.

4.62.2.27 def __rpow__ (self, value)

Raise another value to the power of this rational number. the result.

Parameters:

self The exponent.
value A value to be raised to the power.

Returns:

A new rational number representing power of this instance.

4.62.2.28 def __rsub__ (self, value)

Right substraction of a numeric value.

Parameters:

self
value A value to left from this instance.

4.62.2.29 def __setstate__ (self, state)

Deserialization using pickle.

Parameters:

self
state The state of the object.

4.62.2.30 def __str__ (self)

This method returns a string representing this rational number.

Parameters:

self

Returns:

A string representing this rational number.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.62 RationalNumber Class Reference 222

4.62.2.31 def __sub__ (self, value)

Substract a number and return the result.

Parameters:

self
value The number to substract.

Returns:

The difference of this instance and the argument.

4.62.2.32 def arccos (self)

This method provides the broadcast interface for numpy.arccos.

Parameters:

self

Returns:

The inverse Cosine of this number.

Note:

This number will be converted to float.

4.62.2.33 def arccosh (self)

This method provides the broadcast interface for numpy.arccosh.

Parameters:

self

Returns:

The inverse hyperbolic Cosine of this number.

Note:

This number will be converted to float.

4.62.2.34 def arcsin (self)

This method provides the broadcast interface for numpy.arcsin.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.62 RationalNumber Class Reference 223

Returns:

The inverse Sine of this number.

Note:

This number will be converted to float.

4.62.2.35 def arcsinh (self)

This method provides the broadcast interface for numpy.arcsinh.

Parameters:

self

Returns:

The inverse hyperbolic Sine of this number.

Note:

This number will be converted to float.

4.62.2.36 def arctan (self)

This method provides the broadcast interface for numpy.arctan.

Parameters:

self

Returns:

The inverse Tangent of this number.

Note:

This number will be converted to float.

4.62.2.37 def arctan2 (self, other)

This method provides the broadcast interface for numpy.arctan2.

Parameters:

self
other Another rational number.

Returns:

The binary logarithm of this number.

Note:

This number will be converted to float.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.62 RationalNumber Class Reference 224

4.62.2.38 def arctanh (self)

This method provides the broadcast interface for numpy.arctanh.

Parameters:

self

Returns:

The inverse hyperbolic Tangent of this number.

Note:

This number will be converted to float.

4.62.2.39 def ceil (self)

This method provides the broadcast interface for numpy.ceil.

Parameters:

self

Returns:

The largest integer greater than or equal to this number.

Note:

This number will be converted to float.

4.62.2.40 def conjugate (self)

This method provides the broadcast interface for numpy.conjugate.

Parameters:

self

Returns:

This number.

Note:

This number will be converted to float.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.62 RationalNumber Class Reference 225

4.62.2.41 def cos (self)

This method provides the broadcast interface for numpy.cos.

Parameters:

self

Returns:

The Cosine of this number.

Note:

This number will be converted to float.

4.62.2.42 def cosh (self)

This method provides the broadcast interface for numpy.cosh.

Parameters:

self

Returns:

The hyperbolic Cosine of this number.

Note:

This number will be converted to float.

4.62.2.43 def exp (self)

This method provides the broadcast interface for numpy.exp.

Parameters:

self

Returns:

The Exponential of this number.

Note:

This number will be converted to float.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.62 RationalNumber Class Reference 226

4.62.2.44 def fabs (self)

This method provides the broadcast interface for numpy.fabs.

Parameters:

self

Returns:

The absolute value of this number.

Note:

This number will be converted to float.

4.62.2.45 def floor (self)

This method provides the broadcast interface for numpy.floor.

Parameters:

self

Returns:

The largest integer less than or equal to this number.

Note:

This number will be converted to float.

4.62.2.46 def fmod (self, other)

This method provides the broadcast interface for numpy.fmod.

Parameters:

self
other Another value.

Returns:

This number modulo other.

Note:

This number will be converted to float.

Attention:

This method only works one-way. If another type is called i.e. fmod(other, ratio-
nal(1,1)) then it will fail.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.62 RationalNumber Class Reference 227

4.62.2.47 def get_dividend (self)

Returns the dividend of this instance.

Parameters:

self

Returns:

The dividend of this instance.

4.62.2.48 def get_divisor (self)

Returns the divisor of this instance.

Parameters:

self

Returns:

The divisor of this instance.

4.62.2.49 def hypot (self, other)

This method provides the broadcast interface for numpy.hypot.

Parameters:

self
other Another rational number.

Returns:

The binary logarithm of this number.

Note:

This number will be converted to float.

4.62.2.50 def is_integer (self)

Check wether this instance could be be casted to long accurately.

Returns:

True, if the divisor is equal to one.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.62 RationalNumber Class Reference 228

4.62.2.51 def log (self)

This method provides the broadcast interface for numpy.log.

Parameters:

self

Returns:

The Natural Logarithm of this number.

Note:

This number will be converted to float.

4.62.2.52 def log10 (self)

This method provides the broadcast interface for numpy.log10.

Parameters:

self

Returns:

The decadic Logarithm of this number.

Note:

This number will be converted to float.

4.62.2.53 def log2 (self)

This method provides the broadcast interface for numpy.log2.

Parameters:

self

Returns:

The binary logarithm of this number.

Note:

This number will be converted to float.

4.62.2.54 def normalize (self)

This method maintains the canonical form of this rational number and avoids negative
divisors.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.62 RationalNumber Class Reference 229

4.62.2.55 def sin (self)

This method provides the broadcast interface for numpy.sin.

Parameters:

self

Returns:

The Sine of this number.

Note:

This number will be converted to float.

4.62.2.56 def sinh (self)

This method provides the broadcast interface for numpy.sinh.

Parameters:

self

Returns:

The hyperbolic Sine of this number.

Note:

This number will be converted to float.

4.62.2.57 def sqrt (self)

This method provides the broadcast interface for numpy.sqrt.

Parameters:

self

Returns:

The Square Root of this number.

Note:

This number will be converted to float.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.62 RationalNumber Class Reference 230

4.62.2.58 def square (self)

This method provides the broadcast interface for numpy.square.

Parameters:

self

Returns:

The binary logarithm of this number.

Note:

This number will be converted to float.

4.62.2.59 def tan (self)

This method provides the broadcast interface for numpy.tan.

Parameters:

self

Returns:

The Tangent of this number.

Note:

This number will be converted to float.

4.62.2.60 def tanh (self)

This method provides the broadcast interface for numpy.tanh.

Parameters:

self

Returns:

The hyperbolic Tangent of this number.

Note:

This number will be converted to float.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.63 SIModel Class Reference 231

4.62.2.61 def value_of (number)

Factory for generating Rationalnumbers.

Parameters:

number a numeric value (not float nor complex)

Exceptions:

TypeError If the argument is not int, long, or a RationalNumber (p. 210).

4.62.3 Member Data Documentation

4.62.3.1 __dividend__ [private]

4.62.3.2 __divisor__ [private]

4.62.3.3 tuple value_of = staticmethod(value_of) [static]

4.63 SIModel Class Reference

Inheritance diagram for SIModel::

SIModel

PhysicalModel

4.63.1 Detailed Description

The interface for a physical model for SI units.

The basic intend of this class is to provide an mapping between SI base units and
physical dimensions.

Public Member Functions

• def __init__
Default constructor.

• def get_dimension
Get the pysical dimension that corresponds to the given SI base unit.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.64 Sin Class Reference 232

4.63.2 Member Function Documentation

4.63.2.1 def __init__ (self)

Default constructor.

Parameters:

self

Reimplemented from PhysicalModel (p. 173).

4.63.2.2 def get_dimension (self, unit)

Get the pysical dimension that corresponds to the given SI base unit.

Parameters:

self
unit The unit to check the dimension for.

Exceptions:

qexceptions.UnknownUnitException (p. 332) If the given parameter is no SI base
unit.

Returns:

The corresponding physical dimension.

Reimplemented from PhysicalModel (p. 173).

4.64 Sin Class Reference

Inheritance diagram for Sin::

Sin

UnaryOperation

UncertainComponent

4.64.1 Detailed Description

This class models the GUM-tree-nodes that take the Sine of a silbling.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.64 Sin Class Reference 233

Public Member Functions

• def __init__
Default constructor.

• def equal_debug
A method that is only used for serialization checking.

• def get_uncertainty
Returns the uncertainty of this node. Let the node represent the operation y = sin(x)
then the resulting uncertainty is u(y) = cos(x)× u(x).

• def get_value
Returns the Sine of the silbling.

4.64.2 Member Function Documentation

4.64.2.1 def __init__ (self, right)

Default constructor.

Parameters:

self
right Right silbling of this instance.

Reimplemented from UnaryOperation (p. 287).

4.64.2.2 def equal_debug (self, other)

A method that is only used for serialization checking.

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the instance has the same attribute values as the argument

Reimplemented from UnaryOperation (p. 288).

4.64.2.3 def get_uncertainty (self, component)

Returns the uncertainty of this node. Let the node represent the operation y = sin(x)
then the resulting uncertainty is u(y) = cos(x)× u(x).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.65 Sin Class Reference 234

Parameters:

self
component Another instance of uncertainty.

Returns:

A numeric value, representing the standard uncertainty.

Reimplemented from UncertainComponent (p. 304).

4.64.2.4 def get_value (self)

Returns the Sine of the silbling.

Parameters:

self

Returns:

A numeric value, representing the Sine of the silblings.

Reimplemented from UncertainComponent (p. 305).

4.65 Sin Class Reference

Inheritance diagram for Sin::

Sin

CUnaryOperation

CUncertainComponent

4.65.1 Detailed Description

This class models the sine function.

Public Member Functions

• def get_uncertainty
Get the partial derivate of this component with respect to the given argument.

• def get_value
Get the value of this component.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.66 Sinh Class Reference 235

4.65.2 Member Function Documentation

4.65.2.1 def get_uncertainty (self, x)

Get the partial derivate of this component with respect to the given argument.

Parameters:

self
x The argument of the partial derivation.

Returns:

The partial derivate.

Reimplemented from CUncertainComponent (p. 129).

4.65.2.2 def get_value (self)

Get the value of this component.

Parameters:

self

Returns:

The value of this component.

Reimplemented from CUncertainComponent (p. 129).

4.66 Sinh Class Reference

Inheritance diagram for Sinh::

Sinh

CUnaryOperation

CUncertainComponent

4.66.1 Detailed Description

This class models the hyperbolic sine function.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.67 Sinh Class Reference 236

Public Member Functions

• def get_uncertainty
Get the partial derivate of this component with respect to the given argument.

• def get_value
Get the value of this component.

4.66.2 Member Function Documentation

4.66.2.1 def get_uncertainty (self, x)

Get the partial derivate of this component with respect to the given argument.

Parameters:

self
x The argument of the partial derivation.

Returns:

The partial derivate.

Reimplemented from CUncertainComponent (p. 129).

4.66.2.2 def get_value (self)

Get the value of this component.

Parameters:

self

Returns:

The value of this component.

Reimplemented from CUncertainComponent (p. 129).

4.67 Sinh Class Reference

Inheritance diagram for Sinh::

Sinh

UnaryOperation

UncertainComponent

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.67 Sinh Class Reference 237

4.67.1 Detailed Description

This class models the GUM-tree-nodes that take the Hyperbolic Sine of a silbling.

Public Member Functions

• def __init__
Default constructor.

• def equal_debug
A method that is only used for serialization checking.

• def get_uncertainty
Returns the uncertainty of this node. Let the node represent the operation y =
sinh(x) then the resulting uncertainty is u(y) = cosh(x)u(x).

• def get_value
Returns the Hyperbolic Sine of the silbling.

4.67.2 Member Function Documentation

4.67.2.1 def __init__ (self, right)

Default constructor.

Parameters:

self
right Right silbling of this instance.

Reimplemented from UnaryOperation (p. 287).

4.67.2.2 def equal_debug (self, other)

A method that is only used for serialization checking.

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the instance has the same attribute values as the argument

Reimplemented from UnaryOperation (p. 288).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.68 Sqrt Class Reference 238

4.67.2.3 def get_uncertainty (self, component)

Returns the uncertainty of this node. Let the node represent the operation y = sinh(x)
then the resulting uncertainty is u(y) = cosh(x)u(x).

Parameters:

self
component Another instance of uncertainty.

Returns:

A numeric value, representing the standard uncertainty.

Reimplemented from UncertainComponent (p. 304).

4.67.2.4 def get_value (self)

Returns the Hyperbolic Sine of the silbling.

Parameters:

self

Returns:

A numeric value, representing the Hyperbolic Sine of the silbling.

Reimplemented from UncertainComponent (p. 305).

4.68 Sqrt Class Reference

Inheritance diagram for Sqrt::

Sqrt

CUnaryOperation

CUncertainComponent

4.68.1 Detailed Description

This class models taking the square root of an uncertain component.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.69 Sqrt Class Reference 239

Public Member Functions

• def get_uncertainty
Get the partial derivate of this component with respect to the given argument.

• def get_value
Get the value of this component.

4.68.2 Member Function Documentation

4.68.2.1 def get_uncertainty (self, x)

Get the partial derivate of this component with respect to the given argument.

Parameters:

self
x The argument of the partial derivation.

Returns:

The partial derivate.

Reimplemented from CUncertainComponent (p. 129).

4.68.2.2 def get_value (self)

Get the value of this component.

Parameters:

self

Returns:

The value of this component.

Reimplemented from CUncertainComponent (p. 129).

4.69 Sqrt Class Reference

Inheritance diagram for Sqrt::

Sqrt

UnaryOperation

UncertainComponent

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.69 Sqrt Class Reference 240

4.69.1 Detailed Description

This class models the GUM-tree-nodes that take the square root of a silbling.

Public Member Functions

• def __init__
Default constructor.

• def arithmetic_check
Checks for undefined arguments.

• def equal_debug
A method that is only used for serialization checking.

• def get_uncertainty
Returns the uncertainty of this node. Let the node represent the operation y =

√
x

then the resulting uncertainty is u(y) = 1
2
√

x
u(x).

• def get_value
Returns the square root of the silbling.

4.69.2 Member Function Documentation

4.69.2.1 def __init__ (self, right)

Default constructor.

Parameters:

self
right Right silbling of this instance.

Reimplemented from UnaryOperation (p. 287).

4.69.2.2 def arithmetic_check (self)

Checks for undefined arguments.

Note:

The square root is only defined for positive values.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.69 Sqrt Class Reference 241

Exceptions:

ArithmeticError If x ≤ 0.

Reimplemented from UncertainComponent (p. 302).

4.69.2.3 def equal_debug (self, other)

A method that is only used for serialization checking.

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the instance has the same attribute values as the argument

Reimplemented from UnaryOperation (p. 288).

4.69.2.4 def get_uncertainty (self, component)

Returns the uncertainty of this node. Let the node represent the operation y =
√

x then
the resulting uncertainty is u(y) = 1

2
√

x
u(x).

Parameters:

self
component Another instance of uncertainty.

Returns:

A numeric value, representing the standard uncertainty.

Exceptions:

ZeroDivisionError If the square root is zero.

Reimplemented from UncertainComponent (p. 304).

4.69.2.5 def get_value (self)

Returns the square root of the silbling.

Parameters:

self

Returns:

A numeric value, representing the square root of the silblings.

Reimplemented from UncertainComponent (p. 305).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.70 Sub Class Reference 242

4.70 Sub Class Reference

Inheritance diagram for Sub::

Sub

BinaryOperation

UncertainComponent

4.70.1 Detailed Description

This class models GUM-tree nodes that take the difference of the two silblings.

Public Member Functions

• def __init__
Default constructor.

• def equal_debug
A method that is only used for serialization checking.

• def get_uncertainty
Returns the uncertainty of this node. Let the node represent the operation y = x1−x2

then the resulting uncertainty is u(y) = u(x1)− u(x2).

• def get_value
Returns the difference of the silblings assigned.

4.70.2 Member Function Documentation

4.70.2.1 def __init__ (self, left, right)

Default constructor.

Parameters:

self
left Left silbling of this instance.

right Right silbling of this instance.

Reimplemented from BinaryOperation (p. 89).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.71 Sub Class Reference 243

4.70.2.2 def equal_debug (self, other)

A method that is only used for serialization checking.

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the instance has the same attribute values as the argument

Reimplemented from BinaryOperation (p. 89).

4.70.2.3 def get_uncertainty (self, component)

Returns the uncertainty of this node. Let the node represent the operation y = x1 − x2

then the resulting uncertainty is u(y) = u(x1)− u(x2).

Parameters:

self
component Another instance of uncertainty.

Returns:

A numeric value, representing the standard uncertainty.

Reimplemented from UncertainComponent (p. 304).

4.70.2.4 def get_value (self)

Returns the difference of the silblings assigned.

Parameters:

self

Returns:

A numeric value, representing the difference of the silblings.

Reimplemented from UncertainComponent (p. 305).

4.71 Sub Class Reference

Inheritance diagram for Sub::

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.71 Sub Class Reference 244

Sub

CBinaryOperation

CUncertainComponent

4.71.1 Detailed Description

This class models taking the difference of two complex values.

Public Member Functions

• def get_uncertainty
Get the partial derivate of this component with respect to the given argument.

• def get_value
Get the value of this component.

4.71.2 Member Function Documentation

4.71.2.1 def get_uncertainty (self, x)

Get the partial derivate of this component with respect to the given argument.

Parameters:

self
x The argument of the partial derivation.

Returns:

The partial derivate.

Reimplemented from CUncertainComponent (p. 129).

4.71.2.2 def get_value (self)

Get the value of this component.

Parameters:

self

Returns:

The value of this component.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.72 Tan Class Reference 245

Reimplemented from CUncertainComponent (p. 129).

4.72 Tan Class Reference

Inheritance diagram for Tan::

Tan

UnaryOperation

UncertainComponent

4.72.1 Detailed Description

This class models the GUM-tree-nodes that take the Tangent of a silbling.

Attention:

Because of floating point rounding issues, instances of this class may return invalid
values instead of raising an OverflowError for values close to n× π

2 .

Public Member Functions

• def __init__
Default constructor.

• def equal_debug
A method that is only used for serialization checking.

• def get_uncertainty
Returns the uncertainty of this node. Let the node represent the operation y = tan(x)

then the resulting uncertainty is u(y) = u(x)

cos2(x)
.

• def get_value
Returns the Tangent of the silbling.

4.72.2 Member Function Documentation

4.72.2.1 def __init__ (self, right)

Default constructor.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.72 Tan Class Reference 246

Parameters:

self
right Right silbling of this instance.

Reimplemented from UnaryOperation (p. 287).

4.72.2.2 def equal_debug (self, other)

A method that is only used for serialization checking.

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the instance has the same attribute values as the argument

Reimplemented from UnaryOperation (p. 288).

4.72.2.3 def get_uncertainty (self, component)

Returns the uncertainty of this node. Let the node represent the operation y = tan(x)
then the resulting uncertainty is u(y) = u(x)

cos2(x) .

Parameters:

self
component Another instance of uncertainty.

Returns:

A numeric value, representing the standard uncertainty.

Reimplemented from UncertainComponent (p. 304).

4.72.2.4 def get_value (self)

Returns the Tangent of the silbling.

Parameters:

self

Returns:

A numeric value, representing the Tangent of the silblings.

Reimplemented from UncertainComponent (p. 305).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.73 Tan Class Reference 247

4.73 Tan Class Reference

Inheritance diagram for Tan::

Tan

CUnaryOperation

CUncertainComponent

4.73.1 Detailed Description

This class models the tangent function.

Public Member Functions

• def get_uncertainty
Get the partial derivate of this component with respect to the given argument.

• def get_value
Get the value of this component.

4.73.2 Member Function Documentation

4.73.2.1 def get_uncertainty (self, x)

Get the partial derivate of this component with respect to the given argument.

Parameters:

self
x The argument of the partial derivation.

Returns:

The partial derivate.

Reimplemented from CUncertainComponent (p. 129).

4.73.2.2 def get_value (self)

Get the value of this component.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.74 Tanh Class Reference 248

Parameters:

self

Returns:

The value of this component.

Reimplemented from CUncertainComponent (p. 129).

4.74 Tanh Class Reference

Inheritance diagram for Tanh::

Tanh

UnaryOperation

UncertainComponent

4.74.1 Detailed Description

This class models the GUM-tree-nodes that take the Hyperbolic Tangent of a silbling.

Public Member Functions

• def __init__
Default constructor.

• def equal_debug
A method that is only used for serialization checking.

• def get_uncertainty
Returns the uncertainty of this node. Let the node represent the operation y =
tanh(x) then the resulting uncertainty is u(y) = (1− tanh2(x))u(x).

• def get_value
Returns the Hyperbolic Tangent of the silbling.

4.74.2 Member Function Documentation

4.74.2.1 def __init__ (self, right)

Default constructor.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.74 Tanh Class Reference 249

Parameters:

self
right Right silbling of this instance.

Reimplemented from UnaryOperation (p. 287).

4.74.2.2 def equal_debug (self, other)

A method that is only used for serialization checking.

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the instance has the same attribute values as the argument

Reimplemented from UnaryOperation (p. 288).

4.74.2.3 def get_uncertainty (self, component)

Returns the uncertainty of this node. Let the node represent the operation y = tanh(x)
then the resulting uncertainty is u(y) = (1− tanh2(x))u(x).

Parameters:

self
component Another instance of uncertainty.

Returns:

A numeric value, representing the standard uncertainty.

Reimplemented from UncertainComponent (p. 304).

4.74.2.4 def get_value (self)

Returns the Hyperbolic Tangent of the silbling.

Parameters:

self

Returns:

A numeric value, representing the Hyperbolic Sine of the silbling.

Reimplemented from UncertainComponent (p. 305).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.75 Tanh Class Reference 250

4.75 Tanh Class Reference

Inheritance diagram for Tanh::

Tanh

CUnaryOperation

CUncertainComponent

4.75.1 Detailed Description

This class models the hyperbolic tangent function.

Public Member Functions

• def get_uncertainty
Get the partial derivate of this component with respect to the given argument.

• def get_value
Get the value of this component.

4.75.2 Member Function Documentation

4.75.2.1 def get_uncertainty (self, x)

Get the partial derivate of this component with respect to the given argument.

Parameters:

self
x The argument of the partial derivation.

Returns:

The partial derivate.

Reimplemented from CUncertainComponent (p. 129).

4.75.2.2 def get_value (self)

Get the value of this component.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.76 TestArithmetic Class Reference 251

Parameters:

self

Returns:

The value of this component.

Reimplemented from CUncertainComponent (p. 129).

4.76 TestArithmetic Class Reference

4.76.1 Detailed Description

This class provides the tests to verify the rational number module.

Public Member Functions

• def test_abs
Test getting the absolute value of rational numbers.

• def test_add
Test adding instances of the Type arithmetic.RationalNumber (p. 210).

• def test_casting
Test the casting the Type arithmetic.RationalNumber (p. 210).

• def test_comparisions
Test the comparision functions of rational numbers.

• def test_complex_to_matrix
Test the conversion from complex numbers to a matrix.

• def test_div
Test dividing instances of the Type arithmetic.RationalNumber (p. 210).

• def test_invert
Test inverting instances of the Type arithmetic.RationalNumber (p. 210).

• def test_mul
Test multiplying instances of the Type arithmetic.RationalNumber (p. 210).

• def test_neg
Test negating instances of the Type arithmetic.RationalNumber (p. 210).

• def test_Numpy
Test the integration of the Type arithmetic.RationalNumbers in NumPy.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.76 TestArithmetic Class Reference 252

• def test_pos
Test cloning instances of the Type arithmetic.RationalNumber (p. 210).

• def test_pow
Test powers of instances of the Type arithmetic.RationalNumber (p. 210).

• def test_rational_creation
Test the creation of the Type arithmetic.RationalNumber (p. 210).

• def test_right_ops
Test right-operations of the Type arithmetic.RationalNumber (p. 210). Test the oper-
ations where an unknown numeric type is a left argument of the instance of rational
number.

• def test_sub
Test substracting instances of the Type arithmetic.RationalNumber (p. 210).

• def test_value_of
Test the value_of proxy of the Type arithmetic.RationalNumber (p. 210).

4.76.2 Member Function Documentation

4.76.2.1 def test_abs (self)

Test getting the absolute value of rational numbers.

Parameters:

self

4.76.2.2 def test_add (self)

Test adding instances of the Type arithmetic.RationalNumber (p. 210).

Parameters:

self

4.76.2.3 def test_casting (self)

Test the casting the Type arithmetic.RationalNumber (p. 210).

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.76 TestArithmetic Class Reference 253

4.76.2.4 def test_comparisions (self)

Test the comparision functions of rational numbers.

Parameters:

self

4.76.2.5 def test_complex_to_matrix (self)

Test the conversion from complex numbers to a matrix.

4.76.2.6 def test_div (self)

Test dividing instances of the Type arithmetic.RationalNumber (p. 210).

Parameters:

self

4.76.2.7 def test_invert (self)

Test inverting instances of the Type arithmetic.RationalNumber (p. 210).

Parameters:

self

4.76.2.8 def test_mul (self)

Test multiplying instances of the Type arithmetic.RationalNumber (p. 210).

Parameters:

self

4.76.2.9 def test_neg (self)

Test negating instances of the Type arithmetic.RationalNumber (p. 210).

Parameters:

self

4.76.2.10 def test_Numpy (self)

Test the integration of the Type arithmetic.RationalNumbers in NumPy.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.76 TestArithmetic Class Reference 254

4.76.2.11 def test_pos (self)

Test cloning instances of the Type arithmetic.RationalNumber (p. 210).

Parameters:

self

4.76.2.12 def test_pow (self)

Test powers of instances of the Type arithmetic.RationalNumber (p. 210).

Parameters:

self

4.76.2.13 def test_rational_creation (self)

Test the creation of the Type arithmetic.RationalNumber (p. 210).

Parameters:

self

4.76.2.14 def test_right_ops (self)

Test right-operations of the Type arithmetic.RationalNumber (p. 210). Test the op-
erations where an unknown numeric type is a left argument of the instance of rational
number.

Attention:

This test is not as strict as the individual tests for the operations that require a left
argument. This is because the functions tested here rely on them.

Parameters:

self

4.76.2.15 def test_sub (self)

Test substracting instances of the Type arithmetic.RationalNumber (p. 210).

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.77 TestComplexUncertaintyComponents Class Reference 255

4.76.2.16 def test_value_of (self)

Test the value_of proxy of the Type arithmetic.RationalNumber (p. 210).

Parameters:

self

4.77 TestComplexUncertaintyComponents Class Reference

4.77.1 Detailed Description

This class provides test-cases for the Module cucomponents.

See also:

cucomponents (p. 26)

Public Member Functions

• def setUp
This method sets up the testcase for every individual test.

Private Attributes

• __input_1
• __input_2

Classes

• class OperationTest
This is the abstract super class for testing all operations of the Module cucomponents.

4.77.2 Member Function Documentation

4.77.2.1 def setUp (self)

This method sets up the testcase for every individual test.

Parameters:

self

4.77.3 Member Data Documentation

4.77.3.1 __input_1 [private]

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.78 TestComplexUncertaintyComponents::OperationTest Class Reference 256

4.77.3.2 __input_2 [private]

4.78 TestComplexUncertaintyComponents::OperationTest Class
Reference

4.78.1 Detailed Description

This is the abstract super class for testing all operations of the Module cucomponents.

See also:

cucomponents (p. 26)

Public Member Functions

• def __init__
The Default Constructor.

• def get_component
This method returns the component to be tested.

• def get_max_error
This method returns the maximum allowable error.

• def test_dependencies
This method checks wheter the dependencies are carried out correctly.

• def test_type
This method checks for the type.

• def test_uncertainty
This method checks for the correct value.

• def test_value
This method checks for the correct uncertainty propagation.

Private Attributes

• __component
• __dependents
• __max_err
• __type
• __uncertainty
• __value

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.78 TestComplexUncertaintyComponents::OperationTest Class Reference 257

4.78.2 Member Function Documentation

4.78.2.1 def __init__ (self, component, type, value, uncertainty, dependents, max_-
err = 1e-6)

The Default Constructor.

Parameters:

self
component The component to test.

type The type of the component.

value The expected value of the component.

uncertainty The expected uncertainty of the component.

dependents A list of components this component depends on.

max_err The maximum acceptable numeric error.

4.78.2.2 def get_component (self)

This method returns the component to be tested.

Parameters:

self

Returns:

The component that is currently tested.

4.78.2.3 def get_max_error (self)

This method returns the maximum allowable error.

Parameters:

self

Returns:

The maximum allowable error.

4.78.2.4 def test_dependencies (self)

This method checks wheter the dependencies are carried out correctly.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.79 TestGUMTree Class Reference 258

4.78.2.5 def test_type (self)

This method checks for the type.

Parameters:

self

4.78.2.6 def test_uncertainty (self)

This method checks for the correct value.

Parameters:

self

4.78.2.7 def test_value (self)

This method checks for the correct uncertainty propagation.

Parameters:

self

4.78.3 Member Data Documentation

4.78.3.1 __component [private]

4.78.3.2 __dependents [private]

4.78.3.3 __max_err [private]

4.78.3.4 __type [private]

4.78.3.5 __uncertainty [private]

4.78.3.6 __value [private]

4.79 TestGUMTree Class Reference

4.79.1 Detailed Description

These classes test the function of the global elements of the GUM-tree, namely the
Context class.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.79 TestGUMTree Class Reference 259

Public Member Functions

• def test_automatic_differentiation_example
Check the Module ucomponents by evaluating an example from a paper.

• def test_correlations
Test correlating scalar uncertain components.

• def test_GUM_example
Check the Module ucomponents by evaluating another GUM-example.

• def test_GUM_integration
Check the Module ucomponents by evaluating a GUM-example.

• def test_GUM_tree_example
Check the Module ucomponents by evaluating another GUM-example.

• def testByGUMComplexExample
Check the Module ucomponents by evaluating a ByGUM-example.

• def testByGUMComplexExampleU
Check the Module ucomponents by evaluating a ByGUM-example using units.

4.79.2 Member Function Documentation

4.79.2.1 def test_automatic_differentiation_example (self)

Check the Module ucomponents by evaluating an example from a paper.

Parameters:

self

See also:

"Calculating measurement uncertainty using automatic differentiation"; B.D.Hall;
Measurement Science Technology Issue 13 (2002)

4.79.2.2 def test_correlations (self)

Test correlating scalar uncertain components.

Parameters:

self

See also:

ucomponents.Context.set_correlation (p. 103)
ucomponents.Context.get_correlation (p. 103)

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.79 TestGUMTree Class Reference 260

4.79.2.3 def test_GUM_example (self)

Check the Module ucomponents by evaluating another GUM-example.

Parameters:

self

See also:

ISO GUM

4.79.2.4 def test_GUM_integration (self)

Check the Module ucomponents by evaluating a GUM-example.

Parameters:

self

See also:

"Guidlines for Evaluating and Expressing the uncertainty in Measurements";
B.N.Taylor and C.E. Kuyatt; NIST 1297 (1994)

4.79.2.5 def test_GUM_tree_example (self)

Check the Module ucomponents by evaluating another GUM-example.

Parameters:

self

See also:

"Guidlines for Evaluating and Expressing the uncertainty in Measurements";
B.N.Taylor and C.E. Kuyatt; NIST 1297 (1994)

4.79.2.6 def testByGUMComplexExample (self)

Check the Module ucomponents by evaluating a ByGUM-example.

Parameters:

self

See also:

"ByGUM: A Python software package for calculating measurement uncertainty";
B. D. Hall; Industral Research Limited Report 1305; 2005

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.80 TestOperators Class Reference 261

4.79.2.7 def testByGUMComplexExampleU (self)

Check the Module ucomponents by evaluating a ByGUM-example using units.

Parameters:

self

See also:

"ByGUM: A Python software package for calculating measurement uncertainty";
B. D. Hall; Industral Research Limited Report 1305; 2005

4.80 TestOperators Class Reference

4.80.1 Detailed Description

Test the unit conversion operators.

Public Member Functions

• def test_add_operator
Test the unit add operator.

• def test_compound_operations
Test all permuations of binary operations on unit operators.

• def TEST_CONV
Test an Operator with an integer/long input and an expected output value. Also make
sure, that the output-type is correct.

• def TEST_CONV_APPX
Test an Operator with an integer/long input and an expected output value. Also make
sure, that the output-type is correct.

• def test_identity
Test the global identity variable (for unit converters).

• def test_log_exp_operator
Test the exponential and logarithmic unit operators.

• def test_multiply_operator
Test the unit multiply operator.

Static Public Attributes

• tuple TEST_CONV = staticmethod(TEST_CONV)
• tuple TEST_CONV_APPX = staticmethod(TEST_CONV_APPX)

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.80 TestOperators Class Reference 262

4.80.2 Member Function Documentation

4.80.2.1 def test_add_operator (self)

Test the unit add operator.

Parameters:

self

4.80.2.2 def test_compound_operations (self)

Test all permuations of binary operations on unit operators.

Parameters:

self

4.80.2.3 def TEST_CONV (operator, invalue, outvalue, outtype)

Test an Operator with an integer/long input and an expected output value. Also make
sure, that the output-type is correct.

4.80.2.4 def TEST_CONV_APPX (operator, invalue, outvalue, outtype, confi-
dence)

Test an Operator with an integer/long input and an expected output value. Also make
sure, that the output-type is correct.

4.80.2.5 def test_identity (self)

Test the global identity variable (for unit converters).

Parameters:

self

4.80.2.6 def test_log_exp_operator (self)

Test the exponential and logarithmic unit operators.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.81 TestQuantity Class Reference 263

4.80.2.7 def test_multiply_operator (self)

Test the unit multiply operator.

Parameters:

self

4.80.3 Member Data Documentation

4.80.3.1 tuple TEST_CONV = staticmethod(TEST_CONV) [static]

4.80.3.2 tuple TEST_CONV_APPX = staticmethod(TEST_CONV_APPX)
[static]

4.81 TestQuantity Class Reference

4.81.1 Detailed Description

This class provides the test cases for the quantities.

Public Member Functions

• def setUp
This method initializes this test instance.

• def test_abs
Test getting absolute values of quantities.

• def test_absolute
Test the operator numpy.absolute on quantities.

• def test_add
Test adding quantities.

• def test_arccos
Test the operator numpy.arccos on quantities.

• def test_arccosh
Test the operator numpy.arccosh on quantities.

• def test_arcsin
Test the operator numpy.arcsin on quantities.

• def test_arcsinh
Test the operator numpy.arcsinh on quantities.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.81 TestQuantity Class Reference 264

• def test_arctan
Test the operator numpy.arctan on quantities.

• def test_arctan2
Test the operator numpy.arctan2 on quantities.

• def test_arctanh
Test the operator numpy.arctanh on quantities.

• def test_casts
Test casting quatities to other numeric types.

• def test_ceil
Test the operator numpy.ceil on quantities.

• def test_comparisions
Test comparing quantities.

• def test_conjugate
Test the operator numpy.conjugate on quantities.

• def test_cos
Test the operator numpy.cos on quantities.

• def test_cosh
Test the operator numpy.cosh on quantities.

• def test_div
Test dividing quantities.

• def test_exp
Test the operator numpy.exp on quantities.

• def test_fabs
Test the operator numpy.fabs on quantities.

• def test_floor
Test the operator numpy.floor on quantities.

• def test_fmod
Test the operator numpy.fmod on quantities.

• def test_hypot
Test the operator numpy.hypot on quantities.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.81 TestQuantity Class Reference 265

• def test_iadd
Test augmented-add (+=) of quantities.

• def test_idiv
Test augmented-division (/=) of quantities.

• def test_imul
Test augmented-multiply (∗=) of quantities.

• def test_init
Test the initialization of quantities.

• def test_invert
Test inverting of quantities.

• def test_ipow
Test augmented-powers (∗∗=) of quantities.

• def test_isub
Test augmented-subtract (-=) of quantities.

• def test_log
Test the operator numpy.log on quantities.

• def test_log10
Test the operator numpy.log10 on quantities.

• def test_log2
Test the operator numpy.log2 on quantities.

• def test_mul
Test multiplying quantities.

• def test_neg
Test negating quantities.

• def test_pos
Test cloning quantities.

• def test_pow
Test powers of quantities.

• def test_radd
Test right-add of quantities.

• def test_rdiv

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.81 TestQuantity Class Reference 266

Test right-divide of quantities.

• def test_rmul
Test right-multiply of quantities.

• def test_rpow
Test right-powers of quantities.

• def test_rsub
Test right-subtract of quantities.

• def test_sin
Test the operator numpy.sin on quantities.

• def test_sinh
Test the operator numpy.sinh on quantities.

• def test_sqrt
Test the operator numpy.sqrt on quantities.

• def test_square
Test the operator numpy.square on quantities.

• def test_sub
Test subtracting quantities.

• def test_tan
Test the operator numpy.tan on quantities.

• def test_tanh
Test the operator numpy.tanh on quantities.

Public Attributes

• dimensionless
• incompat
• newtons1
• newtons2
• other
• otherStr

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.81 TestQuantity Class Reference 267

4.81.2 Member Function Documentation

4.81.2.1 def setUp (self)

This method initializes this test instance.

Parameters:

self

4.81.2.2 def test_abs (self)

Test getting absolute values of quantities.

Parameters:

self

4.81.2.3 def test_absolute (self)

Test the operator numpy.absolute on quantities.

Parameters:

self

4.81.2.4 def test_add (self)

Test adding quantities.

Parameters:

self

4.81.2.5 def test_arccos (self)

Test the operator numpy.arccos on quantities.

Parameters:

self

4.81.2.6 def test_arccosh (self)

Test the operator numpy.arccosh on quantities.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.81 TestQuantity Class Reference 268

4.81.2.7 def test_arcsin (self)

Test the operator numpy.arcsin on quantities.

Parameters:

self

4.81.2.8 def test_arcsinh (self)

Test the operator numpy.arcsinh on quantities.

Parameters:

self

4.81.2.9 def test_arctan (self)

Test the operator numpy.arctan on quantities.

Parameters:

self

4.81.2.10 def test_arctan2 (self)

Test the operator numpy.arctan2 on quantities.

Parameters:

self

4.81.2.11 def test_arctanh (self)

Test the operator numpy.arctanh on quantities.

Parameters:

self

4.81.2.12 def test_casts (self)

Test casting quatities to other numeric types.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.81 TestQuantity Class Reference 269

4.81.2.13 def test_ceil (self)

Test the operator numpy.ceil on quantities.

Parameters:

self

4.81.2.14 def test_comparisions (self)

Test comparing quantities.

Parameters:

self

4.81.2.15 def test_conjugate (self)

Test the operator numpy.conjugate on quantities.

Parameters:

self

4.81.2.16 def test_cos (self)

Test the operator numpy.cos on quantities.

Parameters:

self

4.81.2.17 def test_cosh (self)

Test the operator numpy.cosh on quantities.

Parameters:

self

4.81.2.18 def test_div (self)

Test dividing quantities.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.81 TestQuantity Class Reference 270

4.81.2.19 def test_exp (self)

Test the operator numpy.exp on quantities.

Parameters:

self

4.81.2.20 def test_fabs (self)

Test the operator numpy.fabs on quantities.

Parameters:

self

4.81.2.21 def test_floor (self)

Test the operator numpy.floor on quantities.

Parameters:

self

4.81.2.22 def test_fmod (self)

Test the operator numpy.fmod on quantities.

Parameters:

self

4.81.2.23 def test_hypot (self)

Test the operator numpy.hypot on quantities.

Parameters:

self

4.81.2.24 def test_iadd (self)

Test augmented-add (+=) of quantities.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.81 TestQuantity Class Reference 271

4.81.2.25 def test_idiv (self)

Test augmented-division (/=) of quantities.

Parameters:

self

4.81.2.26 def test_imul (self)

Test augmented-multiply (∗=) of quantities.

Parameters:

self

4.81.2.27 def test_init (self)

Test the initialization of quantities.

Parameters:

self

4.81.2.28 def test_invert (self)

Test inverting of quantities.

Parameters:

self

4.81.2.29 def test_ipow (self)

Test augmented-powers (∗∗=) of quantities.

Parameters:

self

4.81.2.30 def test_isub (self)

Test augmented-subtract (-=) of quantities.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.81 TestQuantity Class Reference 272

4.81.2.31 def test_log (self)

Test the operator numpy.log on quantities.

Parameters:

self

4.81.2.32 def test_log10 (self)

Test the operator numpy.log10 on quantities.

Parameters:

self

4.81.2.33 def test_log2 (self)

Test the operator numpy.log2 on quantities.

Parameters:

self

4.81.2.34 def test_mul (self)

Test multiplying quantities.

Parameters:

self

4.81.2.35 def test_neg (self)

Test negating quantities.

Parameters:

self

4.81.2.36 def test_pos (self)

Test cloning quantities.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.81 TestQuantity Class Reference 273

4.81.2.37 def test_pow (self)

Test powers of quantities.

Parameters:

self

4.81.2.38 def test_radd (self)

Test right-add of quantities.

Parameters:

self

4.81.2.39 def test_rdiv (self)

Test right-divide of quantities.

Parameters:

self

4.81.2.40 def test_rmul (self)

Test right-multiply of quantities.

Parameters:

self

4.81.2.41 def test_rpow (self)

Test right-powers of quantities.

Parameters:

self

4.81.2.42 def test_rsub (self)

Test right-subtract of quantities.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.81 TestQuantity Class Reference 274

4.81.2.43 def test_sin (self)

Test the operator numpy.sin on quantities.

Parameters:

self

4.81.2.44 def test_sinh (self)

Test the operator numpy.sinh on quantities.

Parameters:

self

4.81.2.45 def test_sqrt (self)

Test the operator numpy.sqrt on quantities.

Parameters:

self

4.81.2.46 def test_square (self)

Test the operator numpy.square on quantities.

Parameters:

self

4.81.2.47 def test_sub (self)

Test subtracting quantities.

Parameters:

self

4.81.2.48 def test_tan (self)

Test the operator numpy.tan on quantities.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.82 TestSIUnits Class Reference 275

4.81.2.49 def test_tanh (self)

Test the operator numpy.tanh on quantities.

Parameters:

self

4.81.3 Member Data Documentation

4.81.3.1 dimensionless

4.81.3.2 incompat

4.81.3.3 newtons1

4.81.3.4 newtons2

4.81.3.5 other

4.81.3.6 otherStr

4.82 TestSIUnits Class Reference

4.82.1 Detailed Description

SI Testing class. This class tests the definition and semantics of the SI units.

Public Member Functions

• def ALTERNATE_TEST
Test alternate units.

• def BASE_UNIT_TEST
Test base units.

• def test_alternate_units
Test the alternate SI units.

• def test_base_units
Test the base SI units.

• def test_rational_powers
Test rational powers of units.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.82 TestSIUnits Class Reference 276

• def test_transformed_units
Test the transformed SI units (i.e. there is only one: degrees Celsius).

• def TRANSFORMED_TEST
Test transformed units.

Static Public Attributes

• tuple ALTERNATE_TEST = staticmethod(ALTERNATE_TEST)
• tuple BASE_UNIT_TEST = staticmethod(BASE_UNIT_TEST)
• tuple TRANSFORMED_TEST = staticmethod(TRANSFORMED_TEST)

4.82.2 Member Function Documentation

4.82.2.1 def ALTERNATE_TEST (unit, parent, idiotsUnit, symbol)

Test alternate units.

Parameters:

unit The instance of the unit to test.

parent The expected parent unit of the unit.

idiotsUnit A unit that should not be compatible or equal to this unit.

symbol The string is equal to the units symbol.

4.82.2.2 def BASE_UNIT_TEST (unit, dimension, idiotsUnit, symbol, idiots-
Dimension)

Test base units.

Parameters:

unit The instance of the unit to test.

dimension The physical dimension in which the base unit should be defined.

idiotsUnit A unit that should not be compatible or equal to this unit.

symbol The string is equal to the units symbol.

idiotsDimension A dimension in which the unit should not be defined.

4.82.2.3 def test_alternate_units (self)

Test the alternate SI units.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.82 TestSIUnits Class Reference 277

See also:

ALTERNATE_TEST (p. 278)

4.82.2.4 def test_base_units (self)

Test the base SI units.

Parameters:

self

See also:

BASE_UNIT_TEST (p. 278)

4.82.2.5 def test_rational_powers (self)

Test rational powers of units.

Parameters:

self

4.82.2.6 def test_transformed_units (self)

Test the transformed SI units (i.e. there is only one: degrees Celsius).

Parameters:

self

See also:

TRANSFORMED_TEST (p. 278)

4.82.2.7 def TRANSFORMED_TEST (unit, parent, valueParent, value-
Transformed, maxAcceptableError)

Test transformed units.

Parameters:

unit The instance of the unit to test.

parent The expected parent unit of the unit.

valueParent An example for a numeric value that represents the parent.

valueTransformed An example for a numeric value that represens this unit.

maxAcceptableError The maximum acceptable numeric error.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.83 TestUncertaintyComponents Class Reference 278

4.82.3 Member Data Documentation

4.82.3.1 tuple ALTERNATE_TEST = staticmethod(ALTERNATE_TEST)
[static]

4.82.3.2 tuple BASE_UNIT_TEST = staticmethod(BASE_UNIT_TEST)
[static]

4.82.3.3 tuple TRANSFORMED_TEST = staticmethod(TRANSFORMED_-
TEST) [static]

4.83 TestUncertaintyComponents Class Reference

4.83.1 Detailed Description

This class provides tests for the ucomponents module.

Public Member Functions

• def test_clear_duplicates
Test the function ucomponents.clearDuplicates (p. 20).

• def TEST_COMPONENT_SERIALIZATION
Check serializing components of uncertainty.

• def TEST_UNCERTAIN_COMPONENT
A general component test for ucomponents.UncertainComponent (p. 289).

Public Attributes

• inputFloat
• inputLong
• inputRational

Static Public Attributes

• tuple TEST_COMPONENT_SERIALIZATION = staticmethod(TEST_-
COMPONENT_SERIALIZATION)

• tuple TEST_UNCERTAIN_COMPONENT = staticmethod(TEST_-
UNCERTAIN_COMPONENT)

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.83 TestUncertaintyComponents Class Reference 279

Classes

• class Element
A class that is used for testing for identity.

4.83.2 Member Function Documentation

4.83.2.1 def test_clear_duplicates (self)

Test the function ucomponents.clearDuplicates (p. 20).

Parameters:

self

4.83.2.2 def TEST_COMPONENT_SERIALIZATION (component, type, num-
silblings, protocol = pickle.HIGHEST_PROTOCOL)

Check serializing components of uncertainty.

Parameters:

component The instance of ucomponents.UncertainComponent (p. 289) to
check.

type The type of the component.

numsilblings The number components that is returned by
ucomponents.UncertainComponent.depends_on (p. 303)

protocol The serialization protocol version to use.

See also:

pickle.HIGHEST_PROTOCOL

Returns:

The deserialized instance.

4.83.2.3 def TEST_UNCERTAIN_COMPONENT (component, type, expected-
Value, expectedUncertainty, accuracy)

A general component test for ucomponents.UncertainComponent (p. 289).

4.83.3 Member Data Documentation

4.83.3.1 inputFloat

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.84 TestUncertaintyComponents::Element Class Reference 280

4.83.3.2 inputLong

4.83.3.3 inputRational

4.83.3.4 tuple TEST_COMPONENT_SERIALIZATION = staticmethod(
TEST_COMPONENT_SERIALIZATION) [static]

4.83.3.5 tuple TEST_UNCERTAIN_COMPONENT = staticmethod(TEST_-
UNCERTAIN_COMPONENT) [static]

4.84 TestUncertaintyComponents::Element Class Reference

4.84.1 Detailed Description

A class that is used for testing for identity.

Public Member Functions

• def __eq__
The function that is normally used for comparision.

• def __hash__
A necessary method for working with containers.

• def __init__
Default constructor.

• def get_value
Return the value assigned.

Public Attributes

• value

4.84.2 Member Function Documentation

4.84.2.1 def __eq__ (self, other)

The function that is normally used for comparision.

Attention:

When using ucomponents.clearDuplicates (p. 20) this method should not get
called.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.85 TransformedUnit Class Reference 281

Parameters:

self
other Another instance of Element (p. 280).

4.84.2.2 def __hash__ (self)

A necessary method for working with containers.

Parameters:

self

4.84.2.3 def __init__ (self, value)

Default constructor.

Parameters:

self
value A value to assign to the instance

4.84.2.4 def get_value (self)

Return the value assigned.

Parameters:

self

Returns:

The value assigned

4.84.3 Member Data Documentation

4.84.3.1 value

4.85 TransformedUnit Class Reference

Inheritance diagram for TransformedUnit::

TransformedUnit

DerivedUnit

Unit

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.85 TransformedUnit Class Reference 282

4.85.1 Detailed Description

This class provides an interface for a unit that has been derived from a unit using an
operator.

For example feet can be derived from meter.

See also:

Unit.__mul__ (p. 318)
Unit.__div__ (p. 317)
Unit.__add__ (p. 316)
Unit.__sub__ (p. 320)

Note:

Instances of this class can be serialized using pickle.

Public Member Functions

• def __eq__
Compare two transformed units. Two transformed units are equal, if their transfor-
mation as well as their parent units are equal.

• def __getstate__
Serialization using pickle.

• def __init__
Default constructor.

• def __setstate__
Deserialization using pickle.

• def __str__
Print the current unit. This function returns a string of the form (op (parentunit),
for example (K + 273.15) for degrees celsius transformed from kelvins.

• def get_parent
Return the parent unit.

• def get_system_unit
Get the corresponding system unit.

• def to_parent_unit
Get the operator to convert to the parent unit.

• def to_system_unit
Get the operator to convert to the corresponding system unit.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.85 TransformedUnit Class Reference 283

Static Private Attributes

• __operator__ = None
What is the operator to the parent unit.

• __parentUnit__ = None
What was the original unit.

4.85.2 Member Function Documentation

4.85.2.1 def __eq__ (self, other)

Compare two transformed units. Two transformed units are equal, if their transforma-
tion as well as their parent units are equal.

Parameters:

self
other Another instance of a transformed unit.

Returns:

True, if the units are equal.

Reimplemented from Unit (p. 317).

4.85.2.2 def __getstate__ (self)

Serialization using pickle.

Parameters:

self

Returns:

A string that represents the serialized form of this instance.

Reimplemented from Unit (p. 317).

4.85.2.3 def __init__ (self, parent, operator)

Default constructor.

Parameters:

self
parent The parent unit of the current unit.

operator The operator that forms this unit from the parent unit.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.85 TransformedUnit Class Reference 284

4.85.2.4 def __setstate__ (self, state)

Deserialization using pickle.

Parameters:

self
state The state of the object.

Reimplemented from Unit (p. 320).

4.85.2.5 def __str__ (self)

Print the current unit. This function returns a string of the form (op (parentunit), for
example (K + 273.15) for degrees celsius transformed from kelvins.

Parameters:

self

Returns:

A string describing this unit.

See also:

__ProductElement.__str__
operators.UnitOperator.__str__ (p. 328)

Reimplemented from Unit (p. 320).

4.85.2.6 def get_parent (self)

Return the parent unit.

Parameters:

self

Returns:

The unit before the transformation.

4.85.2.7 def get_system_unit (self)

Get the corresponding system unit.

Parameters:

self

Returns:

The corresponding system unit.

Reimplemented from Unit (p. 322).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.86 UnaryOperation Class Reference 285

4.85.2.8 def to_parent_unit (self)

Get the operator to convert to the parent unit.

Parameters:

self

Returns:

The operator to the parent unit.

4.85.2.9 def to_system_unit (self)

Get the operator to convert to the corresponding system unit.

Parameters:

self

Returns:

The operator to the system unit.

Reimplemented from Unit (p. 324).

4.85.3 Member Data Documentation

4.85.3.1 __operator__ = None [static, private]

What is the operator to the parent unit.

4.85.3.2 __parentUnit__ = None [static, private]

What was the original unit.

4.86 UnaryOperation Class Reference

Inheritance diagram for UnaryOperation::

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.86 UnaryOperation Class Reference 286

UnaryOperation

UncertainComponent

Abs

ArcCos

ArcCosh

ArcSin

ArcSinh

ArcTan

ArcTanh

Cos

Cosh

Exp

Log

Neg

Sin

Sinh

Sqrt

Tan

Tanh

4.86.1 Detailed Description

The abstract base class for modelling unary operations. This class provides the abstract
interface for GUM-tree-nodes that have one silbling.

Public Member Functions

• def __getstate__
Serialization using pickle.

• def __init__
Default constructor.

• def __setstate__
Deserialization using pickle.

• def depends_on

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.86 UnaryOperation Class Reference 287

Abstract method: The implementation should return a list of the components of un-
certainty, that this component depends on.

• def equal_debug
A method that is only used for serialization checking.

• def get_silbling
Return the silbling.

Static Private Attributes

• __right = None
The silbling of the operation.

4.86.2 Member Function Documentation

4.86.2.1 def __getstate__ (self)

Serialization using pickle.

Parameters:

self

Returns:

A string that represents the serialized form of this instance.

Reimplemented from UncertainComponent (p. 295).

4.86.2.2 def __init__ (self, right)

Default constructor.

Parameters:

self
right The silbling of this instance.

Reimplemented in Cos (p. 110), Sin (p. 233), Tan (p. 245), Sqrt (p. 240), Log
(p. 153), ArcSin (p. 68), ArcSinh (p. 73), ArcCos (p. 62), ArcCosh (p. 65), Arc-
Tan (p. 75), ArcTanh (p. 81), Cosh (p. 114), Sinh (p. 237), Tanh (p. 248), Exp
(p. 146), Abs (p. 47), and Neg (p. 169).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.86 UnaryOperation Class Reference 288

4.86.2.3 def __setstate__ (self, state)

Deserialization using pickle.

Parameters:

self
state The state of the object.

Reimplemented from UncertainComponent (p. 299).

4.86.2.4 def depends_on (self)

Abstract method: The implementation should return a list of the components of uncer-
tainty, that this component depends on.

Returns:

A list of the components of uncertainty.

Reimplemented from UncertainComponent (p. 303).

4.86.2.5 def equal_debug (self, other)

A method that is only used for serialization checking.

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the instance has the same attribute values as the argument

Reimplemented from UncertainComponent (p. 303).

Reimplemented in Cos (p. 110), Sin (p. 233), Tan (p. 246), Sqrt (p. 241), Log
(p. 154), ArcSin (p. 69), ArcSinh (p. 73), ArcCos (p. 63), ArcCosh (p. 65), Arc-
Tan (p. 75), ArcTanh (p. 81), Cosh (p. 114), Sinh (p. 237), Tanh (p. 249), Exp
(p. 146), Abs (p. 48), and Neg (p. 169).

4.86.2.6 def get_silbling (self)

Return the silbling.

Returns:

The silbling.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.87 UncertainComponent Class Reference 289

4.86.3 Member Data Documentation

4.86.3.1 __right = None [static, private]

The silbling of the operation.

4.87 UncertainComponent Class Reference

Inheritance diagram for UncertainComponent::

UncertainComponent

BinaryOperation UnaryOperation UncertainInput

Add

ArcTan2

Div

Mul

Pow

Sub

Abs

ArcCos

ArcCosh

ArcSin

ArcSinh

ArcTan

ArcTanh

Cos

Cosh

Exp

Log

Neg

Sin

Sinh

Sqrt

Tan

Tanh

4.87.1 Detailed Description

This is the abstract base class to model components of uncertainty as described in by
"The GUM Tree".

See also:

"The "GUM Tree": A software design pattern for handling measurement uncer-
tainty"; B. D. Hall; Industrial Research Report 1291; Measurements Standards

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.87 UncertainComponent Class Reference 290

Laboratory New Zealand (2003).

Public Member Functions

• def __abs__
This method returs the absolute value of this instance.

• def __add__
This method adds the argument to this instance.

• def __coerce__
Implementation of coercion rules.

• def __div__
This method divides this instance by the argument.

• def __eq__
This method is an alias for (self is other). It checks if the argument is identical with
the current instance.

• def __getstate__
Serialization using pickle.

• def __init__
Default constructor.

• def __invert__
Inverts this instance.

• def __mul__
This method multiplies the argument by this instance.

• def __ne__
This method is an alias for not(self is other). It checks if the argument is not identical
with the current instance.

• def __neg__
This method negates this instance.

• def __pow__
This method raises this to the power of the argument.

• def __radd__
This method adds this instance to the argument.

• def __rdiv__

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.87 UncertainComponent Class Reference 291

This method divides the argument by this instance.

• def __rmul__
This method multiplies the argument by this instance.

• def __rpow__
This method raises the argument to the power of this instance.

• def __rsub__
This method substracts this instance from the argument.

• def __setstate__
Deserialization using pickle.

• def __str__
This method returs the absolute value of this instance.

• def __sub__
This method substracts the argument from this instance.

• def arccos
This method provides the broadcast interface for numpy.arccos.

• def arccosh
This method provides the broadcast interface for numpy.arccosh.

• def arcsin
This method provides the broadcast interface for numpy.arcsin.

• def arcsine
A factory method, that can be used to create instances of uncertain components. This
method returns uncertain inputs that are quantified as an arcsin distribution.

• def arcsinh
This method provides the broadcast interface for numpy.arcsinh.

• def arctan
This method provides the broadcast interface for numpy.arctan.

• def arctan2
This method provides an interface for numpy.arctan2.

• def arctanh
This method provides the broadcast interface for numpy.arctanh.

• def arithmetic_check

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.87 UncertainComponent Class Reference 292

This method checks this instance for mathematical correctness. You should overload
this method, if your class is not defined for specific argument values. If any (math-
ematical) invalid values have been assigned, your implementation should raise an
ArithmeticError explaining the problem. This method is usually called within the
constructor of a class, after the members have been initialized.

• def beta
A factory method, that can be used to create instances of uncertain components. This
method returns uncertain inputs that are quantified as a beta distribution, having the
parameters p and q.

• def cos
This method provides the broadcast interface for numpy.cos.

• def cosh
This method provides the broadcast interface for numpy.cosh.

• def depends_on
Abstract method: The implementation should return a list of the components of un-
certainty, that this component depends on.

• def equal_debug
A method that is only used for serialization checking.

• def exp
This method provides the broadcast interface for numpy.exp.

• def fabs
This method provides the broadcast interface for numpy.fabs.

• def gaussian
A factory method, that can be used to create instances of uncertain components. This
method returns uncertain inputs that are quantified as a gaussian distribution, cen-
tered at value, and having the uncertainty sigma.

• def get_uncertainty
Abstract method: The implementation should return a numeric value (e.g.
float,int,long,or arithmetic.RationalNumber (p. 210)) representing the standard un-
certainty of this component.

• def get_value
Abstract method: The implementation should return a numeric value (e.g.
float,int,long,or arithmetic.RationalNumber (p. 210)) representing the value as-
signed to the component of uncertainty.

• def hypot
This method provides an interface for numpy.hypot.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.87 UncertainComponent Class Reference 293

• def log
This method provides the broadcast interface for numpy.log.

• def log10
This method provides the broadcast interface for numpy.log10.

• def log2
This method provides the broadcast interface for numpy.log2.

• def set_context
Assign a context to this component. This method is only used in combination with
__str__. If a context is assigned to the instance, the correlation coefficients will be
considered for __str__. Otherwise __str__ assumes that there is no correlation among
the inputs.

• def sin
This method provides the broadcast interface for numpy.sin.

• def sinh
This method provides the broadcast interface for numpy.sinh.

• def sqrt
This method provides the broadcast interface for numpy.sqrt.

• def square
This method provides the broadcast interface for numpy.sqrt.

• def tan
This method provides the broadcast interface for numpy.tan.

• def tanh
This method provides the broadcast interface for numpy.tanh.

• def triangular
A factory method, that can be used to create instances of uncertain components. This
method returns uncertain inputs that are quantified as a triangular distribution, cen-
tered at x, and having the half-width a.

• def uniform
A factory method, that can be used to create instances of uncertain components. This
method returns uncertain inputs that are quantified as a uniform distribution, centered
at x, and having the half-width a.

• def value_of
A factory method, that can be used to create instances of uncertain components. This
method returns instances of UncertainNumber depending on the argument.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.87 UncertainComponent Class Reference 294

Static Public Attributes

• tuple arcsine = staticmethod(arcsine)
• tuple beta = staticmethod(beta)
• tuple gaussian = staticmethod(gaussian)
• tuple triangular = staticmethod(triangular)
• tuple uniform = staticmethod(uniform)
• tuple value_of = staticmethod(value_of)

Private Attributes

• __context

4.87.2 Member Function Documentation

4.87.2.1 def __abs__ (self)

This method returs the absolute value of this instance.

Parameters:

self

4.87.2.2 def __add__ (self, other)

This method adds the argument to this instance.

Note:

If the argument is not an instance of UncertainComponent (p. 289) it will be
converted using UncertainComponent.value_of (p. 309).

Parameters:

self
other A numeric value.

See also:

UncertainComponent.value_of (p. 309)

4.87.2.3 def __coerce__ (self, other)

Implementation of coercion rules.

See also:

Coercion - The page describing the coercion rules.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.87 UncertainComponent Class Reference 295

4.87.2.4 def __div__ (self, other)

This method divides this instance by the argument.

Note:

If the argument is not an instance of UncertainComponent (p. 289) it will be
converted using UncertainComponent.value_of (p. 309).

Parameters:

self
other A numeric value.

See also:

UncertainComponent.value_of (p. 309)

4.87.2.5 def __eq__ (self, other)

This method is an alias for (self is other). It checks if the argument is identical with the
current instance.

Note:

This behavior is enforced to handle special cases. Imagine you want to compare
sin(a± ua)× (a± ua) with sin(a± ua)× (b± ub) with a = b;ua = ub. Since
in the first case the values are identical, they are dependent. In the second case the
values are the same, but we do not know about their independence. Therefore the
second case needs a different handling. In order not to confuse these two cases,
this method has to check for identity.

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the argument is identical to the current instance.

4.87.2.6 def __getstate__ (self)

Serialization using pickle.

Parameters:

self

Returns:

A string that represents the serialized form of this instance.

Reimplemented in UncertainInput (p. 311), BinaryOperation (p. 88), and Unary-
Operation (p. 287).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.87 UncertainComponent Class Reference 296

4.87.2.7 def __init__ (self)

Default constructor.

Parameters:

self

4.87.2.8 def __invert__ (self)

Inverts this instance.

Parameters:

self

4.87.2.9 def __mul__ (self, other)

This method multiplies the argument by this instance.

Note:

If the argument is not an instance of UncertainComponent (p. 289) it will be
converted using UncertainComponent.value_of (p. 309).

Parameters:

self
other A numeric value.

See also:

UncertainComponent.value_of (p. 309)

4.87.2.10 def __ne__ (self, other)

This method is an alias for not(self is other). It checks if the argument is not identical
with the current instance.

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the argument is not identical to the current instance.

See also:

UncertainComponent.__eq__ (p. 295)

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.87 UncertainComponent Class Reference 297

4.87.2.11 def __neg__ (self)

This method negates this instance.

Parameters:

self

4.87.2.12 def __pow__ (self, other)

This method raises this to the power of the argument.

Note:

If the argument is not an instance of UncertainComponent (p. 289) it will be
converted using UncertainComponent.value_of (p. 309).

Parameters:

self
other A numeric value.

See also:

UncertainComponent.value_of (p. 309)

4.87.2.13 def __radd__ (self, other)

This method adds this instance to the argument.

Note:

If the argument is not an instance of UncertainComponent (p. 289) it will be
converted using UncertainComponent.value_of (p. 309).

Parameters:

self
other A numeric value.

See also:

UncertainComponent.value_of (p. 309)

4.87.2.14 def __rdiv__ (self, other)

This method divides the argument by this instance.

Note:

If the argument is not an instance of UncertainComponent (p. 289) it will be
converted using UncertainComponent.value_of (p. 309).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.87 UncertainComponent Class Reference 298

Parameters:

self
other A numeric value.

See also:

UncertainComponent.value_of (p. 309)

4.87.2.15 def __rmul__ (self, other)

This method multiplies the argument by this instance.

Note:

If the argument is not an instance of UncertainComponent (p. 289) it will be
converted using UncertainComponent.value_of (p. 309).

Parameters:

self
other A numeric value.

See also:

UncertainComponent.value_of (p. 309)

4.87.2.16 def __rpow__ (self, other)

This method raises the argument to the power of this instance.

Note:

If the argument is not an instance of UncertainComponent (p. 289) it will be
converted using UncertainComponent.value_of (p. 309).

Parameters:

self
other A numeric value.

See also:

UncertainComponent.value_of (p. 309)

4.87.2.17 def __rsub__ (self, other)

This method substracts this instance from the argument.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.87 UncertainComponent Class Reference 299

Note:

If the argument is not an instance of UncertainComponent (p. 289) it will be
converted using UncertainComponent.value_of (p. 309).

Parameters:

self
other A numeric value.

See also:

UncertainComponent.value_of (p. 309)

4.87.2.18 def __setstate__ (self, state)

Deserialization using pickle.

Parameters:

self
state The state of the object.

Reimplemented in UncertainInput (p. 312), BinaryOperation (p. 89), and Unary-
Operation (p. 288).

4.87.2.19 def __str__ (self)

This method returs the absolute value of this instance.

Parameters:

self

Returns:

A string of the form "<value> +- <uncertainty>" or "<value> +- <uncertainty>
[NC]", if no context was provided.

See also:

set_context (p. 306)

4.87.2.20 def __sub__ (self, other)

This method substracts the argument from this instance.

Note:

If the argument is not an instance of UncertainComponent (p. 289) it will be
converted using UncertainComponent.value_of (p. 309).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.87 UncertainComponent Class Reference 300

Parameters:

self
other A numeric value.

See also:

UncertainComponent.value_of (p. 309)

4.87.2.21 def arccos (self)

This method provides the broadcast interface for numpy.arccos.

Parameters:

self

Returns:

The inverse Cosine of this component.

4.87.2.22 def arccosh (self)

This method provides the broadcast interface for numpy.arccosh.

Parameters:

self

Returns:

The inverse hyperbolic Cosine of this component.

4.87.2.23 def arcsin (self)

This method provides the broadcast interface for numpy.arcsin.

Parameters:

self

Returns:

The inverse Sine of this component.

4.87.2.24 def arcsine (value, dof = arithmetic.INFINITY)

A factory method, that can be used to create instances of uncertain components. This
method returns uncertain inputs that are quantified as an arcsin distribution.

Returns:

An uncertain component.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.87 UncertainComponent Class Reference 301

4.87.2.25 def arcsinh (self)

This method provides the broadcast interface for numpy.arcsinh.

Parameters:

self

Returns:

The inverse hyperbolic Sine of this component.

4.87.2.26 def arctan (self)

This method provides the broadcast interface for numpy.arctan.

Parameters:

self

Returns:

The inverse Tangent of this component.

4.87.2.27 def arctan2 (self, other)

This method provides an interface for numpy.arctan2.

Parameters:

self
other A numeric value.

See also:

UncertainComponent.value_of (p. 309)

4.87.2.28 def arctanh (self)

This method provides the broadcast interface for numpy.arctanh.

Parameters:

self

Returns:

The inverse hyperbolic Tangent of this component.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.87 UncertainComponent Class Reference 302

4.87.2.29 def arithmetic_check (self)

This method checks this instance for mathematical correctness. You should over-
load this method, if your class is not defined for specific argument values. If any
(mathematical) invalid values have been assigned, your implementation should raise
an ArithmeticError explaining the problem. This method is usually called within the
constructor of a class, after the members have been initialized.

Parameters:

self

Reimplemented in Div (p. 144), Sqrt (p. 240), Log (p. 154), ArcSin (p. 68), ArcCos
(p. 63), ArcCosh (p. 65), and ArcTanh (p. 81).

4.87.2.30 def beta (value, p, q, dof = arithmetic.INFINITY)

A factory method, that can be used to create instances of uncertain components. This
method returns uncertain inputs that are quantified as a beta distribution, having the
parameters p and q.

Parameters:

value The assigned value.

p A numeric value, representing p.

q A numeric value, representing q

dof The assigned number of degrees of freedom.

Returns:

An uncertain component.

4.87.2.31 def cos (self)

This method provides the broadcast interface for numpy.cos.

Parameters:

self

Returns:

The Cosine of this component.

4.87.2.32 def cosh (self)

This method provides the broadcast interface for numpy.cosh.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.87 UncertainComponent Class Reference 303

Returns:

The hyperbolic Cosine of this component.

4.87.2.33 def depends_on (self)

Abstract method: The implementation should return a list of the components of uncer-
tainty, that this component depends on.

Returns:

A list of the components of uncertainty.

Reimplemented in UncertainInput (p. 312), BinaryOperation (p. 89), and Unary-
Operation (p. 288).

4.87.2.34 def equal_debug (self, other)

A method that is only used for serialization checking.

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the instance has equal attributes as the argument

Reimplemented in UncertainInput (p. 312), BinaryOperation (p. 89), Unary-
Operation (p. 288), Add (p. 51), ArcTan2 (p. 79), Mul (p. 162), Div (p. 144),
Sub (p. 243), Pow (p. 174), Cos (p. 110), Sin (p. 233), Tan (p. 246), Sqrt (p. 241),
Log (p. 154), ArcSin (p. 69), ArcSinh (p. 73), ArcCos (p. 63), ArcCosh (p. 65),
ArcTan (p. 75), ArcTanh (p. 81), Cosh (p. 114), Sinh (p. 237), Tanh (p. 249), Exp
(p. 146), Abs (p. 48), and Neg (p. 169).

4.87.2.35 def exp (self)

This method provides the broadcast interface for numpy.exp.

Parameters:

self

Returns:

The Exponential of this component.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.87 UncertainComponent Class Reference 304

4.87.2.36 def fabs (self)

This method provides the broadcast interface for numpy.fabs.

Parameters:

self

Returns:

The absolute value of this component.

4.87.2.37 def gaussian (value, sigma, dof = arithmetic.INFINITY)

A factory method, that can be used to create instances of uncertain components. This
method returns uncertain inputs that are quantified as a gaussian distribution, centered
at value, and having the uncertainty sigma.

Parameters:

value A numeric value, representing x.

sigma A numeric value, representing a

dof The assigned number of degrees of freedom.

Returns:

An uncertain component.

4.87.2.38 def get_uncertainty (self, component)

Abstract method: The implementation should return a numeric value (e.g.
float,int,long,or arithmetic.RationalNumber (p. 210)) representing the standard un-
certainty of this component.

Parameters:

self
component Another instance of uncertainty. If the argument is this instance the

uncertainty is returned, 0
1 should be returned otherwise. This is analogous to

taking the derivate of an independent variable. For further explanation see
"The GUM tree".

Returns:

A numeric value, representing the standard uncertainty.

See also:

arithmetic.RationalNumber (p. 210)
"The "GUM Tree": A software design pattern for handling measurement uncer-
tainty"; B. D. Hall; Industrial Research Report 1291; Measurements Standards
Laboratory New Zealand (2003).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.87 UncertainComponent Class Reference 305

Reimplemented in UncertainInput (p. 313), Add (p. 51), ArcTan2 (p. 79), Mul
(p. 163), Div (p. 144), Sub (p. 243), Pow (p. 175), Cos (p. 110), Sin (p. 233),
Tan (p. 246), Sqrt (p. 241), Log (p. 154), ArcSin (p. 69), ArcSinh (p. 73), Arc-
Cos (p. 63), ArcCosh (p. 66), ArcTan (p. 75), ArcTanh (p. 82), Cosh (p. 114), Sinh
(p. 238), Tanh (p. 249), Exp (p. 146), Abs (p. 48), and Neg (p. 169).

4.87.2.39 def get_value (self)

Abstract method: The implementation should return a numeric value (e.g.
float,int,long,or arithmetic.RationalNumber (p. 210)) representing the value assigned
to the component of uncertainty.

Parameters:

self

Returns:

A numeric value, representing the value.

Reimplemented in UncertainInput (p. 313), Add (p. 51), ArcTan2 (p. 80), Mul
(p. 163), Div (p. 145), Sub (p. 243), Pow (p. 175), Cos (p. 110), Sin (p. 234),
Tan (p. 246), Sqrt (p. 241), Log (p. 155), ArcSin (p. 69), ArcSinh (p. 74), Arc-
Cos (p. 64), ArcCosh (p. 66), ArcTan (p. 75), ArcTanh (p. 82), Cosh (p. 115), Sinh
(p. 238), Tanh (p. 249), Exp (p. 147), Abs (p. 48), and Neg (p. 169).

4.87.2.40 def hypot (self, other)

This method provides an interface for numpy.hypot.

Parameters:

self
other A numeric value.

See also:

UncertainComponent.value_of (p. 309)

4.87.2.41 def log (self)

This method provides the broadcast interface for numpy.log.

Parameters:

self

Returns:

The Natural Logarithm of this component.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.87 UncertainComponent Class Reference 306

4.87.2.42 def log10 (self)

This method provides the broadcast interface for numpy.log10.

Parameters:

self

Returns:

The decadic Logarithm of this component.

4.87.2.43 def log2 (self)

This method provides the broadcast interface for numpy.log2.

Parameters:

self

Returns:

The decadic Logarithm of this component.

4.87.2.44 def set_context (self, context)

Assign a context to this component. This method is only used in combination with
__str__. If a context is assigned to the instance, the correlation coefficients will be
considered for __str__. Otherwise __str__ assumes that there is no correlation among
the inputs.

Parameters:

context An instance of Context (p. 101).
self

See also:

__str__ (p. 299)
Context (p. 101)

4.87.2.45 def sin (self)

This method provides the broadcast interface for numpy.sin.

Parameters:

self

Returns:

The Sine of this component.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.87 UncertainComponent Class Reference 307

4.87.2.46 def sinh (self)

This method provides the broadcast interface for numpy.sinh.

Parameters:

self

Returns:

The hyperbolic Sine of this component.

4.87.2.47 def sqrt (self)

This method provides the broadcast interface for numpy.sqrt.

Parameters:

self

Returns:

The Square Root of this component.

4.87.2.48 def square (self)

This method provides the broadcast interface for numpy.sqrt.

Parameters:

self

Returns:

The Square Root of this component.

4.87.2.49 def tan (self)

This method provides the broadcast interface for numpy.tan.

Parameters:

self

Returns:

The Tangent of this component.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.87 UncertainComponent Class Reference 308

4.87.2.50 def tanh (self)

This method provides the broadcast interface for numpy.tanh.

Parameters:

self

Returns:

The hyperbolic Tangent of this component.

4.87.2.51 def triangular (value, halfwitdh, dof = arithmetic.INFINITY)

A factory method, that can be used to create instances of uncertain components. This
method returns uncertain inputs that are quantified as a triangular distribution, centered
at x, and having the half-width a.

Parameters:

value A numeric value, representing x.

halfwitdh A numeric value, representing a

dof The assigned number of degrees of freedom.

Returns:

An uncertain component, having the uncertainty u(x) = a√
6

.

4.87.2.52 def uniform (value, halfwitdh, dof = arithmetic.INFINITY)

A factory method, that can be used to create instances of uncertain components. This
method returns uncertain inputs that are quantified as a uniform distribution, centered
at x, and having the half-width a.

Parameters:

value A numeric value, representing x.

halfwitdh A numeric value, representing a.

dof The assigned number of degrees of freedom.

Returns:

An uncertain component, having the uncertainty u(x) = a√
3

.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.88 UncertainInput Class Reference 309

4.87.2.53 def value_of (value)

A factory method, that can be used to create instances of uncertain components. This
method returns instances of UncertainNumber depending on the argument.

Parameters:

value An instance of UncertainNumber or a numeric value.

Returns:

The argument, if it is already an instance of UncertainNumber, or a new instance
of UncertainInput (p. 309) (having an uncertainty of 0.0) if the argument is a
numeric value (i.e. int,float...).

Exceptions:

TypeError If the argument is a quantity. You cannot encapsulate quantites in
UncertainValues. Plase use Quantity(UncertainValue) instead.

4.87.3 Member Data Documentation

4.87.3.1 __context [private]

4.87.3.2 tuple arcsine = staticmethod(arcsine) [static]

4.87.3.3 tuple beta = staticmethod(beta) [static]

4.87.3.4 tuple gaussian = staticmethod(gaussian) [static]

4.87.3.5 tuple triangular = staticmethod(triangular) [static]

4.87.3.6 tuple uniform = staticmethod(uniform) [static]

4.87.3.7 tuple value_of = staticmethod(value_of) [static]

4.88 UncertainInput Class Reference

Inheritance diagram for UncertainInput::

UncertainInput

UncertainComponent

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.88 UncertainInput Class Reference 310

4.88.1 Detailed Description

This class provides the model for uncertain inputs, that are referred to as "Leafs" in
"The GUM tree".

See also:

"The "GUM Tree": A software design pattern for handling measurement uncer-
tainty"; B. D. Hall; Industrial Research Report 1291; Measurements Standards
Laboratory New Zealand (2003).

Public Member Functions

• def __getstate__
Serialization using pickle.

• def __hash__
Hash this instance.

• def __init__
Default constructor.

• def __setstate__
Deserialization using pickle.

• def depends_on
Returns a list containing this element.

• def equal_debug
A method that is only used for serialization checking.

• def get_dof
Returns the assigned degrees of freedom.

• def get_uncertainty
Returns the assigned uncertainty.

• def get_value
Returns the assigned value.

Private Attributes

• __dof
• __uncertainty
• __value

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.88 UncertainInput Class Reference 311

Static Private Attributes

• float __dof = 0.0
• float __uncertainty = 0.0
• float __value = 0.0

4.88.2 Member Function Documentation

4.88.2.1 def __getstate__ (self)

Serialization using pickle.

Parameters:

self

Returns:

A string that represents the serialized form of this instance.

Reimplemented from UncertainComponent (p. 295).

4.88.2.2 def __hash__ (self)

Hash this instance.

4.88.2.3 def __init__ (self, value, uncertainty, dof = arithmetic.INFINITY)

Default constructor.

Note:

The parameters of the input must not be instances of UncertainComponent
(p. 289) nor quantities.Quantity (p. 184). Create quantities, having an Uncertain-
Input (p. 309) as numeric argument instead.

Parameters:

self
value The numeric value of the input.

dof The assigned component of degrees of freedom.

uncertainty The standard uncertainty of the input.

See also:

UncertainQuantity.py

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.88 UncertainInput Class Reference 312

4.88.2.4 def __setstate__ (self, state)

Deserialization using pickle.

Parameters:

self
state The state of the object.

Reimplemented from UncertainComponent (p. 299).

4.88.2.5 def depends_on (self)

Returns a list containing this element.

Returns:

A list of the components of uncertainty.

Reimplemented from UncertainComponent (p. 303).

4.88.2.6 def equal_debug (self, other)

A method that is only used for serialization checking.

Parameters:

self
other Another instance of UncertainComponent (p. 289)

Returns:

True, if the instance has the same attribute values as the argument

Reimplemented from UncertainComponent (p. 303).

4.88.2.7 def get_dof (self)

Returns the assigned degrees of freedom.

Parameters:

self

Returns:

A numeric value or arithmetic.INFINITY (p. 4), representing the value.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.88 UncertainInput Class Reference 313

4.88.2.8 def get_uncertainty (self, component)

Returns the assigned uncertainty.

Parameters:

self
component Another component of uncertainty.

Returns:

A numeric value, representing the standard uncertainty.

See also:

UncertainComponent.get_uncertainty (p. 304)

Reimplemented from UncertainComponent (p. 304).

4.88.2.9 def get_value (self)

Returns the assigned value.

Parameters:

self

Returns:

A numeric value, representing the value.

Reimplemented from UncertainComponent (p. 305).

4.88.3 Member Data Documentation

4.88.3.1 __dof [private]

4.88.3.2 float __dof = 0.0 [static, private]

4.88.3.3 __uncertainty [private]

4.88.3.4 float __uncertainty = 0.0 [static, private]

4.88.3.5 __value [private]

4.88.3.6 float __value = 0.0 [static, private]

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.89 Unit Class Reference 314

4.89 Unit Class Reference

Inheritance diagram for Unit::

Unit

BaseUnit DerivedUnit

AlternateUnit CompoundUnit ProductUnit TransformedUnit

4.89.1 Detailed Description

An abstract class to model physical units.

This class provides an interface to model physical units.

Attention:

You have to use one of its silblings to get any effect.

Public Member Functions

• def __add__
Support of Adding an offset to the current unit (i.e. Celsus = Kelvin + 253.15).
This function returns a TransformedUnit (p. 281) that represents adding the offset to
the current unit.

• def __coerce__
Implementation of coercion rules. This implementation ensures that transformed units
can be created from units.

• def __div__
Support for dividing units and numeric values. This function returns a new Unit
(p. 314) that represents the operation.

• def __eq__
Check for if two units are equal.

• def __getstate__
Abstract method: Serialization using pickle.

• def __invert__
Support inversion of units. This function returns a new Unit (p. 314) that represents
the operation. Suppose your unit is [U], then the inverted unit is [1

U
].

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.89 Unit Class Reference 315

• def __mul__
Suport for multiplying a numeric value or unit. This function returns a new Unit
(p. 314) that represents multiplying the factor or unit to the current unit.

• def __ne__
Check for if two units are unequal.

• def __pow__
Support integer powers. This function returns a new Unit (p. 314) that represents the
power of the current unit.

• def __setstate__
Abstract method: Deserialization using pickle.

• def __str__
Support of printing units. The silblings of unit override this method. It should print
the symbols of the units that form the unit. For example a ProductUnit (p. 176) might
print kg∗m∗s∧(-2).

• def __sub__
Support for Substracting an offset. This function works in a similar way as Unit.__-
add__ (p. 316).

• def compound
Support compound units. This method returns a compound unit of the current unit
and the argument. Both units have to describe the same physical dimension.

• def get_dimension
Get the corresponding physical dimension.

• def get_operator_to
Convert units. This method returns an operator that converts values that have been
formed with the current unit to another other unit.

• def get_system_unit
Get the corresponding system unit. The physical model is used to determine the map-
ping to the system unit.

• def is_compatible
Check if two units can be converted to each other.

• def root
Support of integer roots. This function returns a new Unit (p. 314) that represents the
root of the current unit.

• def sqrt
Support of square root. This function returns a new Unit (p. 314) that represents the
square root of the current unit.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.89 Unit Class Reference 316

• def to_system_unit
Abstract Function to convert to corresponding system unit.

Private Member Functions

• def __getTransformOf
Helper function to get the transformation to the system unit. This method returns an
operator that converts values that have been formed with the current unit to its system
unit.

• def __rootInstance
Helper function to get the n-th root instance of the unit.

• def __transformUnit
Helper function that applies a transformation to the current unit.

4.89.2 Member Function Documentation

4.89.2.1 def __add__ (self, other)

Support of Adding an offset to the current unit (i.e. Celsus = Kelvin+253.15). This
function returns a TransformedUnit (p. 281) that represents adding the offset to the
current unit.

Parameters:

self
other A numerical value to add to the unit.

Returns:

A transformed unit that represents adding the offset to the current unit.

See also:

TransformedUnit (p. 281)

4.89.2.2 def __coerce__ (self, other)

Implementation of coercion rules. This implementation ensures that transformed units
can be created from units.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.89 Unit Class Reference 317

4.89.2.3 def __div__ (self, other)

Support for dividing units and numeric values. This function returns a new Unit
(p. 314) that represents the operation.

Parameters:

self
other A number or unit.

Exceptions:

ZeroDivisionError This error is raised if the divisor is zero.

Returns:

A new unit representing the operation.

See also:

ProductUnit (p. 176)
TransformedUnit (p. 281)

Reimplemented in ProductUnit (p. 179).

4.89.2.4 def __eq__ (self, other)

Check for if two units are equal.

Parameters:

self
other Another instance of a Unit (p. 314) or its subclasses.

Returns:

True, if this unit and the argument are equal.

Reimplemented in BaseUnit (p. 85), AlternateUnit (p. 57), CompoundUnit (p. 97),
ProductUnit (p. 179), and TransformedUnit (p. 283).

4.89.2.5 def __getstate__ (self)

Abstract method: Serialization using pickle.

Parameters:

self

Returns:

A string that represents the serialized form of this instance.

Reimplemented in BaseUnit (p. 85), AlternateUnit (p. 58), CompoundUnit (p. 98),
ProductUnit (p. 180), and TransformedUnit (p. 283).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.89 Unit Class Reference 318

4.89.2.6 def __getTransformOf (self) [private]

Helper function to get the transformation to the system unit. This method returns an
operator that converts values that have been formed with the current unit to its system
unit.

Parameters:

self

Returns:

A converter to the system unit.

Exceptions:

qexceptions.ConversionException (p. 108) If a conversion is not possible an ex-
ception is raised (e.g. if the unit has a fractional exponent, or if the transfor-
mation is not linear).

See also:

operators (p. 28)

4.89.2.7 def __invert__ (self)

Support inversion of units. This function returns a new Unit (p. 314) that represents
the operation. Suppose your unit is [U], then the inverted unit is [1

U].

Returns:

A new unit representing the operation.

See also:

ProductUnit (p. 176)

4.89.2.8 def __mul__ (self, other)

Suport for multiplying a numeric value or unit. This function returns a new Unit
(p. 314) that represents multiplying the factor or unit to the current unit.

Parameters:

self
other A number or unit.

Returns:

A new unit representing the operation.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.89 Unit Class Reference 319

See also:

TransformedUnit (p. 281)
ProductUnit (p. 176)
ONE (p. 23)

4.89.2.9 def __ne__ (self, other)

Check for if two units are unequal.

Parameters:

self
other Another instance of a Unit (p. 314) or its subclasses.

Returns:

True, if this unit and the argument are unequal.

4.89.2.10 def __pow__ (self, other)

Support integer powers. This function returns a new Unit (p. 314) that represents the
power of the current unit.

Attention:

In order to preserve dimensional consistency we do only allow integers or rational
numbers as powers of units.

Parameters:

self
other An integer.

Returns:

A new unit representing the operation.

See also:

ProductUnit (p. 176)

4.89.2.11 def __rootInstance (self, unit, root) [private]

Helper function to get the n-th root instance of the unit.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.89 Unit Class Reference 320

unit The unit to be rooted.

root An integer to be used as root.

Returns:

A new unit representing the operation.

See also:

ProductUnit (p. 176)

4.89.2.12 def __setstate__ (self, state)

Abstract method: Deserialization using pickle.

Parameters:

self
state The state of the object.

Reimplemented in BaseUnit (p. 86), AlternateUnit (p. 58), CompoundUnit (p. 98),
ProductUnit (p. 180), and TransformedUnit (p. 284).

4.89.2.13 def __str__ (self)

Support of printing units. The silblings of unit override this method. It should print
the symbols of the units that form the unit. For example a ProductUnit (p. 176) might
print kg∗m∗s∧(-2).

Parameters:

self

Returns:

A string describing this unit.

Attention:

The subclasses override this method, calling Unit.__str__ (p. 320) has no effect.

Reimplemented in BaseUnit (p. 86), AlternateUnit (p. 59), CompoundUnit (p. 98),
ProductUnit (p. 181), and TransformedUnit (p. 284).

4.89.2.14 def __sub__ (self, other)

Support for Substracting an offset. This function works in a similar way as Unit.__-
add__ (p. 316).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.89 Unit Class Reference 321

Parameters:

self
other A numerical value to substract from the unit.

Returns:

A transformed unit that represents substracting the offset from the current unit.

See also:

TransformedUnit (p. 281)
Unit.__add__ (p. 316)

4.89.2.15 def __transformUnit (self, operation) [private]

Helper function that applies a transformation to the current unit.

Parameters:

self
operation The operation to be performed.

Returns:

A new unit representing the current unit after applying the operation.

4.89.2.16 def compound (self, other)

Support compound units. This method returns a compound unit of the current unit and
the argument. Both units have to describe the same physical dimension.

Parameters:

self
other Another unit describing the same dimension.

Returns:

A new compound unit.

Exceptions:

TypeError If the units describe different dimensions.

4.89.2.17 def get_dimension (self)

Get the corresponding physical dimension.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.89 Unit Class Reference 322

Parameters:

self

Returns:

The corresponding physical dimension.

Attention:

This method is intended to be final for the predefined silblings of Unit (p. 314).
You only have to override it if you are directly inheriting from Unit (p. 314).

4.89.2.18 def get_operator_to (self, unit)

Convert units. This method returns an operator that converts values that have been
formed with the current unit to another other unit.

Parameters:

self
unit The unit to convert to.

Returns:

A converter to the argument.

Exceptions:

qexceptions.ConversionException (p. 108) If a conversion is not possible an ex-
ception is raised (i.e. if the units describe different physical dimensions).

See also:

operators (p. 28)

4.89.2.19 def get_system_unit (self)

Get the corresponding system unit. The physical model is used to determine the map-
ping to the system unit.

Parameters:

self

Returns:

The system unit.

See also:

PhysicalModel (p. 172)

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.89 Unit Class Reference 323

Attention:

The subclasses override this method, calling Unit.get_system_unit (p. 322) has
no effect.

Reimplemented in BaseUnit (p. 87), AlternateUnit (p. 60), CompoundUnit (p. 99),
ProductUnit (p. 181), and TransformedUnit (p. 284).

4.89.2.20 def is_compatible (self, other)

Check if two units can be converted to each other.

Two units are compatible if their corresponding system units match, or if both units
describe the same physical dimension.

Parameters:

self
other Another unit to compare to.

Returns:

True, if the units are compatible.

4.89.2.21 def root (self, other)

Support of integer roots. This function returns a new Unit (p. 314) that represents the
root of the current unit.

Parameters:

self
other An integer.

Exceptions:

ArithmeticError If the root is zero this function fails.

Returns:

A new unit representing the operation.

See also:

ProductUnit (p. 176)

4.89.2.22 def sqrt (self)

Support of square root. This function returns a new Unit (p. 314) that represents the
square root of the current unit.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.90 UnitExistsException Class Reference 324

Parameters:

self

Returns:

A new unit representing the operation.

See also:

ProductUnit (p. 176)
root (p. 323)

4.89.2.23 def to_system_unit (self)

Abstract Function to convert to corresponding system unit.

Parameters:

self

Returns:

The corresponding system unit.

Attention:

The subclasses override this method, calling Unit.to_system_unit (p. 324) has no
effect.

Reimplemented in BaseUnit (p. 87), AlternateUnit (p. 60), CompoundUnit (p. 99),
ProductUnit (p. 183), and TransformedUnit (p. 285).

4.90 UnitExistsException Class Reference

Inheritance diagram for UnitExistsException::

UnitExistsException

QuantitiesException

4.90.1 Detailed Description

Exception that is raised when a dimension, base unit, or alternate unit of the same type
has already been created.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.90 UnitExistsException Class Reference 325

See also:

units.BaseUnit (p. 83)
units.AlternateUnit (p. 56)
units.Dimension (p. 138)

Public Member Functions

• def __init__
Default constructor.

• def __str__
Returns a string describing this exception.

Private Attributes

• __unit__

4.90.2 Member Function Documentation

4.90.2.1 def __init__ (self, unit, args)

Default constructor.

Parameters:

self
unit The unit that raised this exception.

args Additional arguments of this exception.

4.90.2.2 def __str__ (self)

Returns a string describing this exception.

Parameters:

self

Returns:

A string that describes this exception.

4.90.3 Member Data Documentation

4.90.3.1 __unit__ [private]

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.91 UnitOperator Class Reference 326

4.91 UnitOperator Class Reference

Inheritance diagram for UnitOperator::

UnitOperator

__ExpOperator__ AddOperator CompoundOperator Identity LogOperator MultiplyOperator

4.91.1 Detailed Description

Basic abstract Operator to use on units.

Attention:

This class is intended to be abstract. You have to use one of its silblings get any
effect.

Public Member Functions

• def __eq__
Test for equality.

• def __getstate__
Abstract method: Serialization using pickle.

• def __invert__
Invert this operation.

• def __mul__
Perform the current operation on another operator.

• def __setstate__
Abstract method: Deserialization using pickle.

• def __str__
Represent this operation by a string.

• def convert
Convert a value.

• def is_linear
Check if the operator is linear.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.91 UnitOperator Class Reference 327

4.91.2 Member Function Documentation

4.91.2.1 def __eq__ (self, other)

Test for equality.

Parameters:

self
other Another UnitOperator (p. 326).

Reimplemented in __ExpOperator__ (p. 39), LogOperator (p. 158), AddOperator
(p. 53), MultiplyOperator (p. 165), CompoundOperator (p. 93), and Identity
(p. 149).

4.91.2.2 def __getstate__ (self)

Abstract method: Serialization using pickle.

Parameters:

self

Returns:

A string that represents the serialized form of this instance.

Reimplemented in __ExpOperator__ (p. 39), LogOperator (p. 158), AddOperator
(p. 53), MultiplyOperator (p. 165), CompoundOperator (p. 94), and Identity
(p. 149).

4.91.2.3 def __invert__ (self)

Invert this operation.

This method returns a new operator that represents the inversion of this operator.

Attention:

This method is intended to be abstract. The silblings of this class override it in
order to get an effect.

Parameters:

self

Returns:

The inverse operation of this operation.

Reimplemented in __ExpOperator__ (p. 39), LogOperator (p. 158), AddOperator
(p. 54), MultiplyOperator (p. 165), CompoundOperator (p. 94), and Identity
(p. 150).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.91 UnitOperator Class Reference 328

4.91.2.4 def __mul__ (self, otherOperator)

Perform the current operation on another operator.

Another operation g(x) will be performed on this operator f(x). So that the new
Operator is f × g = g(f(x)).

Parameters:

self
otherOperator The other operator to concat.

Returns:

The resulting operator.

Reimplemented in AddOperator (p. 54), MultiplyOperator (p. 166), and Identity
(p. 150).

4.91.2.5 def __setstate__ (self, state)

Abstract method: Deserialization using pickle.

Parameters:

self
state The state of the object.

Reimplemented in __ExpOperator__ (p. 40), LogOperator (p. 159), AddOperator
(p. 54), MultiplyOperator (p. 166), CompoundOperator (p. 94), and Identity
(p. 150).

4.91.2.6 def __str__ (self)

Represent this operation by a string.

Attention:

This method is intended to be abstract. The silblings of this class override it in
order to get an effect.

Parameters:

self

Returns:

A string describing this operation.

Reimplemented in __ExpOperator__ (p. 40), LogOperator (p. 159), AddOperator
(p. 55), MultiplyOperator (p. 167), CompoundOperator (p. 95), and Identity
(p. 151).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.92 UnitsManager Class Reference 329

4.91.2.7 def convert (self, value)

Convert a value.

This method performs the desired operation on an absolute value.

Attention:

This method is intended to be abstract. The silblings of this class override it in
order to get an effect.

Parameters:

self
value The value to convert.

Returns:

The converted value

Reimplemented in __ExpOperator__ (p. 40), LogOperator (p. 159), AddOperator
(p. 55), MultiplyOperator (p. 167), CompoundOperator (p. 95), and Identity
(p. 151).

4.91.2.8 def is_linear (self)

Check if the operator is linear.

This method checks if this operator is linear or not.

Attention:

This method is intended to be abstract. The silblings of this class override it in
order to get an effect.

Parameters:

self

Returns:

True, if the Operator is linear.

Reimplemented in __ExpOperator__ (p. 41), LogOperator (p. 160), AddOperator
(p. 56), MultiplyOperator (p. 167), CompoundOperator (p. 95), and Identity
(p. 151).

4.92 UnitsManager Class Reference

4.92.1 Detailed Description

This manages the alternate and base units as well as the physical dimensions.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.92 UnitsManager Class Reference 330

See also:

AlternateUnit (p. 56)
BaseUnit (p. 83)
Dimension (p. 138)

Public Member Functions

• def __init__
This is the default constructor.

• def addUnit
This is a helper function to add the units to the dictionary.

• def existsUnit
Check if a BaseUnit (p. 83), AlternateUnit (p. 56) or Dimension (p. 138) is already
contained.

• def get_model
Return the global physical model used.

• def set_model
Set the global physical model to be used.

Static Private Attributes

• __physicalModel = None
Physical Model used for units.

• dictionary __unitsDictionary__ = {None:None}

4.92.2 Member Function Documentation

4.92.2.1 def __init__ (self)

This is the default constructor.

Parameters:

self

4.92.2.2 def addUnit (self, unit)

This is a helper function to add the units to the dictionary.

Parameters:

self

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.92 UnitsManager Class Reference 331

unit An instance of an BaseUnit (p. 83) or AlternateUnit (p. 56) to add.

Exceptions:

UnitExistsException If the same symbol already exists in the dictionary of units.

4.92.2.3 def existsUnit (self, unit)

Check if a BaseUnit (p. 83), AlternateUnit (p. 56) or Dimension (p. 138) is already
contained.

This function checks only for the existence of a Symbol. So that no Symbols of units
and dimensions are defined twice.

Parameters:

self
unit An instance of a BaseUnit (p. 83), AlternateUnit (p. 56) or Dimension

(p. 138) to be checked for.

Returns:

True, if the Symbol of the unit/dimension already existed. False, otherwise.

4.92.2.4 def get_model (self)

Return the global physical model used.

Parameters:

self

Returns:

The current physical model used.

Attention:

This function returns None, if no model is currently in use.

4.92.2.5 def set_model (self, physicalModel)

Set the global physical model to be used.

Parameters:

self
physicalModel The model to be used.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

4.93 UnknownUnitException Class Reference 332

4.92.3 Member Data Documentation

4.92.3.1 __physicalModel = None [static, private]

Physical Model used for units.

4.92.3.2 dictionary __unitsDictionary__ = {None:None} [static,
private]

Dictionary of BaseUnits and AlternateUnits created.

It maps the symbol from the respective base or alternate unit to an instance of the
BaseUnit (p. 83) created.

4.93 UnknownUnitException Class Reference

Inheritance diagram for UnknownUnitException::

UnknownUnitException

QuantitiesException

4.93.1 Detailed Description

An exception that is raised whenever an unexpected unit was used.

See also:

si.SIModel.get_dimension (p. 232)

Public Member Functions

• def __init__
The default constructor.

• def __str__
Returns a string describing this exception.

Private Attributes

• __unit__

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

5 SCUQ File Documentation 333

4.93.2 Member Function Documentation

4.93.2.1 def __init__ (self, unit, args)

The default constructor.

Parameters:

self
unit An instance of a unit that is unknown.

args Additional arguments of this exception.

4.93.2.2 def __str__ (self)

Returns a string describing this exception.

Parameters:

self

Returns:

String that describes the exception.

4.93.3 Member Data Documentation

4.93.3.1 __unit__ [private]

5 SCUQ File Documentation

5.1 __init__.py File Reference

5.1.1 Detailed Description

This file is evaluated whenever the quantities package is loaded.

It loads the modules neccessary for operating this package. It also performs some
global initialization.

Author:

Thomas Reidemeister

Namespaces

• namespace scuq
• namespace scuq::__init__

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

5.2 arithmetic.py File Reference 334

Variables

• list __all__ = ["arithmetic", "units", "qexceptions", "si", "quantities", "opera-
tors", "ucomponents", "cucomponents"]

The modules contained within the quantities package.

5.2 arithmetic.py File Reference

5.2.1 Detailed Description

This file contains several functions and classes that are used for numeric computations
in the other modules of this library.

Author:

Thomas Reidemeister

Namespaces

• namespace scuq::arithmetic

Classes

• class RationalNumber
This class provides support for rational numbers.

Functions

• def complex_to_matrix
This function converts a complex number to a column vector.

• def gcd
Calculate the greatest common divisor.

• def rational
This function provides an interface for rational numbers creation, as suggested in
PEP 239.

Variables

• string INFINITY = "inf"
Global constant for infinity that is used in combination with the degrees of freedom
evaluation.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

5.3 cucomponents.py File Reference 335

5.3 cucomponents.py File Reference

5.3.1 Detailed Description

This file contains the module to model complex uncertain values.

Author:

Thomas Reidemeister

Namespaces

• namespace scuq::cucomponents

Classes

• class Abs
This class models taking the absolute value of a complex function.

• class Add
This class models adding two complex values.

• class ArcCos
This class models the inverse cosine function.

• class ArcCosh
This class models the inverse hyperbolic cosine function.

• class ArcSin
This class models the inverse sine function.

• class ArcSinh
This class models the inverse hyperbolic sine function.

• class ArcTan
This class models the inverse tangent function.

• class ArcTan2
This class models two-argument inverse tangent.

• class ArcTanh
This class models the inverse hyperbolic tangent function.

• class CBinaryOperation
This abstract class models a binary operation.

• class Conjugate

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

5.3 cucomponents.py File Reference 336

This class models taking the negative of a complex value.

• class Context
This class provides a context for complex-valued uncertainty evaluations. It manages
the correlation coefficients and is able to evaluate the effective degrees of freedom.

• class Cos
This class models the cosine function.

• class Cosh
This class models the hyperbolic cosine function.

• class CUnaryOperation
This abstract class models an unary operation.

• class CUncertainComponent
This is the abstract super class of all complex valued uncertain components. Despite
defining the interface for complex valued uncertain components, it also provides a set
of factory methods that act as an interface for numpy.

• class CUncertainInput
This class models a complex-valued input of a function.

• class Div
This class models dividing two complex values.

• class Exp
This class models the exponential function ex. x denotes the sibling of this instance.

• class Inv
This class models inverting complex values. Let an instance of this class model the
complex value x then this class models 1

x
.

• class Log
This class models logarithms having a real base. However, the base cannot be uncer-
tain.

• class Mul
This class models multiplying two complex values.

• class Neg
This class models taking the negative of a complex value.

• class Pow
This class models complex powers.

• class Sin

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

5.4 operators.py File Reference 337

This class models the sine function.

• class Sinh
This class models the hyperbolic sine function.

• class Sqrt
This class models taking the square root of an uncertain component.

• class Sub
This class models taking the difference of two complex values.

• class Tan
This class models the tangent function.

• class Tanh
This class models the hyperbolic tangent function.

Functions

• def complex_to_matrix
This function transforms a complex value into a matrix.

5.4 operators.py File Reference

5.4.1 Detailed Description

This file contains the classes necessary to define, use, and handle operations on units.

Author:

Thomas Reidemeister

Namespaces

• namespace scuq::operators

Classes

• class __ExpOperator__
This class provides an Interface for exponential operators. It is used as helper for the
LogOperator (p. 156).

• class AddOperator
This class provides an Interface for offset operators.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

5.5 qexceptions.py File Reference 338

• class CompoundOperator
Compound Operator.

• class Identity
This class provides an Interface for the identity Operator.

• class LogOperator
This class provides an interface for logarithmic operators.

• class MultiplyOperator
This class provides an Interface for factor operators.

• class UnitOperator
Basic abstract Operator to use on units.

Variables

• tuple IDENTITY = Identity()

5.5 qexceptions.py File Reference

5.5.1 Detailed Description

This file contains a variety of exception definitions that are used by the quantities pack-
age.

Author:

Thomas Reidemeister

Namespaces

• namespace scuq::qexceptions

Classes

• class ConversionException
General exception that is raised whenever a unit conversion fails.

• class NotDimensionlessException
Exception that is raised whenever a a unit is not dimensionless where it has to be.

• class QuantitiesException
General class for qexceptions of this module.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

5.6 quantities.py File Reference 339

• class UnitExistsException
Exception that is raised when a dimension, base unit, or alternate unit of the same
type has already been created.

• class UnknownUnitException
An exception that is raised whenever an unexpected unit was used.

5.6 quantities.py File Reference

5.6.1 Detailed Description

This file contains the classes to model, handle, and use physical quantities.

It also contains some base quantities that can be used to derive combined quantities.

Author:

Thomas Reidemeister

Namespaces

• namespace scuq::quantities

Classes

• class Quantity
Base class that provides an interface to model quantities.

Functions

• def is_strict
An abbreviation for Quantity.is_strict (p. 210).

• def set_strict
An abbreviation for Quantity.set_strict (p. 210).

5.7 si.py File Reference

5.7.1 Detailed Description

This file contains the predefined SI units.

It models SI base units and SI alternate units. The alternate units have been formed as
product other alternate SI units where possible as described in NIST 330.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

5.7 si.py File Reference 340

See also:

"The International System of Units"; Barry N. Taylor; NIST 330 (2001)

Author:

Thomas Reidemeister

Namespaces

• namespace scuq::si

Classes

• class SIModel
The interface for a physical model for SI units.

Variables

• tuple __model = SIModel()
• tuple AMPERE = units.BaseUnit("A")

Unit instance to model the BaseUnit Ampere.

• tuple BECQUEREL = units.AlternateUnit("Bq", ∼SECOND)
Unit instance to model the SI unit Becquerel.

• tuple CANDELA = units.BaseUnit("cd")
Unit instance to model the BaseUnit Candela.

• float CELSIUS = 273.15
Unit instance to model the SI unit degree Celsius.

• tuple COULOMB = units.AlternateUnit("C", AMPERE ∗ SECOND)
Unit instance to model the SI unit Coulomb.

• tuple FARAD = units.AlternateUnit("F", COULOMB / VOLT)
Unit instance to model the SI unit Farad.

• tuple GRAY = units.AlternateUnit("Gy", JOULE/KILOGRAM)
Unit instance to model the SI unit Gray.

• tuple HENRY = units.AlternateUnit("H", WEBER / AMPERE)
Unit instance to model the SI unit Henry.

• tuple HERTZ = units.AlternateUnit("Hz", ∼SECOND)
Unit instance to model the SI unit Herz.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

5.7 si.py File Reference 341

• tuple JOULE = units.AlternateUnit("J", NEWTON ∗ METER)
Unit instance to model the SI unit Joule.

• tuple KATAL = units.AlternateUnit("kat", MOLE/SECOND)
Unit instance to model the SI unit Katal.

• tuple KELVIN = units.BaseUnit("K")
Unit instance to model the BaseUnit Kelvin.

• tuple KILOGRAM = units.BaseUnit("kg")
Unit instance to model the BaseUnit Kilogram.

• tuple LUMEN = units.AlternateUnit("lm", CANDELA∗STERADIAN)
Unit instance to model the SI unit Lumen.

• tuple LUX = units.AlternateUnit("lx", LUMEN/(METER∗METER))
Unit instance to model the SI unit Lux.

• tuple METER = units.BaseUnit("m")
Unit instance to model the BaseUnit Meter.

• tuple MOLE = units.BaseUnit("mol")
Unit instance to model the BaseUnit Mol.

• tuple NEWTON = units.AlternateUnit("N", KILOGRAM ∗ METER/(SEC-
OND ∗∗ 2))

Unit instance to model the SI unit Newton.

• tuple OHM
• tuple PASCAL = units.AlternateUnit("Pa", NEWTON / (METER ∗∗ 2))

Unit instance to model the SI unit Pascal.

• tuple RADIAN = units.AlternateUnit("rad", units.ONE)
• tuple SECOND = units.BaseUnit("s")

Unit instance to model the BaseUnit Second.

• tuple SIEMENS = units.AlternateUnit("S", AMPERE / VOLT)
Unit instance to model the SI unit Siemens.

• tuple SIVERT = units.AlternateUnit("Sv", JOULE/KILOGRAM)
Unit instance to model the SI unit Sivert.

• tuple STERADIAN = units.AlternateUnit("sr", units.ONE)
• tuple TESLA = units.AlternateUnit("T", WEBER / (METER∗∗2))

Unit instance to model the SI unit Tesla.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

5.8 testcases.py File Reference 342

• tuple VOLT = units.AlternateUnit("V", WATT / AMPERE)
Unit instance to model the SI unit Volt.

• tuple WATT = units.AlternateUnit("W", JOULE / SECOND)
Unit instance to model the SI unit Watt.

• tuple WEBER = units.AlternateUnit("Wb", VOLT ∗ SECOND)
Unit instance to model the SI unit Weber.

5.8 testcases.py File Reference

5.8.1 Detailed Description

This file contains a variety of test cases that verify this library.

Author:

Thomas Reidemeister

Namespaces

• namespace scuq::testcases

Classes

• class TestArithmetic
This class provides the tests to verify the rational number module.

• class TestComplexUncertaintyComponents
This class provides test-cases for the Module cucomponents.

• class TestComplexUncertaintyComponents::OperationTest
This is the abstract super class for testing all operations of the Module cucomponents.

• class TestGUMTree
These classes test the function of the global elements of the GUM-tree, namely the
Context class.

• class TestOperators
Test the unit conversion operators.

• class TestQuantity
This class provides the test cases for the quantities.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

5.9 ucomponents.py File Reference 343

• class TestSIUnits
SI Testing class. This class tests the definition and semantics of the SI units.

• class TestUncertaintyComponents
This class provides tests for the ucomponents module.

• class TestUncertaintyComponents::Element
A class that is used for testing for identity.

Functions

• def test_serialization
A general test for serialization of instances.

Variables

• tuple suite = unittest.TestSuite()

5.9 ucomponents.py File Reference

5.9.1 Detailed Description

This file contains the module to model uncertain values.

Author:

Thomas Reidemeister

Namespaces

• namespace scuq::ucomponents

Classes

• class Abs
This class models the GUM-tree-nodes that take the absolute value of a silbling.

• class Add
This class models GUM-tree nodes that add two silblings.

• class ArcCos
This class models the GUM-tree-nodes that take the Arcus Cosine of a silbling.

• class ArcCosh

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

5.9 ucomponents.py File Reference 344

This class models the GUM-tree-nodes that take the inverse Hyperbolic Cosine.

• class ArcSin
This class models the GUM-tree-nodes that take the Arc Sine of a silbling.

• class ArcSinh
This class models the GUM-tree-nodes that take the inverse Hyperbolic Sine of a
silbling.

• class ArcTan
This class models the GUM-tree-nodes that take the Arcus Tangent of a silbling.

• class ArcTan2
This class models the inverse two-argument tangent.

• class ArcTanh
This class models the GUM-tree-nodes that take the inverse Hyperbolic Tangent of a
silbling.

• class BinaryOperation
The abstract base class for modelling binary operations. This class provides the
abstract interface for GUM-tree-nodes that have two silblings.

• class Context
This class provides the context for an uncertainty evaluation. It maintains the cor-
relation between the inputs and can be used to evaluate the combined standard
uncertainty, as shown below. Let your model be y = f(x1, x2, . . . , xN), then
u2

c(y) =
∑N

i=1

(
δf
δxi

)2
u2(xi) + 2

∑N

i=1

∑N

j=i+1
δf
δxi

δf
δxj

u(xi, xj).

• class Cos
This class models the GUM-tree-nodes that take the Cosine of a silbling.

• class Cosh
This class models the GUM-tree-nodes that take the Hyperbolic Cosine of a silbling.

• class Div
This class models GUM-tree nodes that divide two silblings.

• class Exp
This class models the GUM-tree-nodes that take the exponential of a silbling.

• class Log
This class models the GUM-tree-nodes that take the Natural Logarithm of a silbling.

• class Mul
This class models GUM-tree nodes that multiply two silblings.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

5.9 ucomponents.py File Reference 345

• class Neg
This class models the unary negation as GUM-tree-element.

• class Pow
This class models GUM-tree nodes that raise the left silbling to the power of the right
one.

• class Sin
This class models the GUM-tree-nodes that take the Sine of a silbling.

• class Sinh
This class models the GUM-tree-nodes that take the Hyperbolic Sine of a silbling.

• class Sqrt
This class models the GUM-tree-nodes that take the square root of a silbling.

• class Sub
This class models GUM-tree nodes that take the difference of the two silblings.

• class Tan
This class models the GUM-tree-nodes that take the Tangent of a silbling.

• class Tanh
This class models the GUM-tree-nodes that take the Hyperbolic Tangent of a silbling.

• class UnaryOperation
The abstract base class for modelling unary operations. This class provides the ab-
stract interface for GUM-tree-nodes that have one silbling.

• class UncertainComponent
This is the abstract base class to model components of uncertainty as described in by
"The GUM Tree".

• class UncertainInput
This class provides the model for uncertain inputs, that are referred to as "Leafs" in
"The GUM tree".

Functions

• def clearDuplicates
Remove identical elements from a list.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

5.10 units.py File Reference 346

5.10 units.py File Reference

5.10.1 Detailed Description

This file is evaluated whenever the units module is loaded.

It loads the classes necessary to operate the units module and performs some global
initialization.

Author:

Thomas Reidemeister

Namespaces

• namespace scuq::units

Classes

• class __ProductElement__
A helper class for ProductUnit (p. 176) classes. This class helps to maintain the
factors of a product unit.

• class AlternateUnit
This class provides an interface for units that describe the same dimension as another
unit, but need to be distinguished from it by another symbol (e.g. to abbreviate them,
or to distinguish their purpose).

• class BaseUnit
This class provides the interface to define and use base units.

• class CompoundUnit
This class provides an interface for describing compound units. The units forming
a compound unit have to describe the same physical dimension. For example time
[hour : min : second].

• class DerivedUnit
This class provides an abstract interface for all units that have been transformed from
other units.

• class Dimension
This class provides an interface to model physical dimensions.

• class PhysicalModel
This class models the abstract interface for physical models.

• class ProductUnit
The unit is a combined unit of the product of the powers of units.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

5.10 units.py File Reference 347

• class TransformedUnit
This class provides an interface for a unit that has been derived from a unit using an
operator.

• class Unit
An abstract class to model physical units.

• class UnitsManager
This manages the alternate and base units as well as the physical dimensions.

Functions

• def get_default_model
Get the physical model currently in use. This function returns None, if no model is
currently in use.

• def set_default_model
Set the default physical model to use.

Variables

• tuple __char = __unicode.encode("UTF-8")
• string __unicode = u"\u03b8"
• tuple __UNITS_MANAGER__ = UnitsManager()

Global units Manager that keeps track of the units and dimensions created.

• tuple CURRENT = Dimension("I")
Predefined global dimension for the Electric Current.

• tuple LENGTH = Dimension("L")
Predefined global dimension for the Length.

• tuple LUMINOUS_INTENSITY = Dimension("Li")
Predefined global dimension for Luminous Intensity.

• tuple MASS = Dimension("M")
Predefined global dimension for the Mass.

• tuple NONE = Dimension(ONE)
Predefined global dimension for a dimensionless quantity.

• tuple ONE = ProductUnit()
Dimensionless unit ONE.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

6 SCUQ Example Documentation 348

• tuple SUBSTANCE = Dimension("n")
Predefined global dimension for the Amount of Substance.

• tuple TEMPERATURE = Dimension(__char)
Predefined global dimension for the Temperature.

• tuple TIME = Dimension("t")
Predefined global dimension for the Time.

6 SCUQ Example Documentation

6.1 AlternateUnits.py

This example shows how to create and use instances of units.AlternateUnit (p. 56).
They are created from other units using transformations. A symbol is assigned to the
new unit, to distinguish it from other units. This symbol has to be unique and must
not interfer with symbols of other units already created. We will show this by a simple
example using SI units.

See also:

units.AlternateUnit (p. 56)

You have to import this module to use si units.
from scuq import *

Lets at first demonstrate what happens if a unit
symbol is used twice.

try:
myNewton = units.AlternateUnit("N",

si.KILOGRAM*si.METER/si.SECOND**2)
except qexceptions.UnitExistsException, exp:

"The following base unit has already been defined : N"
... you should not create units having the same

symbol twice.
print str(exp)

Define the unit dynamic
myNewton = units.AlternateUnit("MN",

si.KILOGRAM*si.METER/si.SECOND**2)

"MN"
print str(myNewton)

"False", since they have different symbols
print "myNewton == si.NEWTON: "+str(myNewton == si.NEWTON)

However they describe the same physical dimension, thus...
print "myNewton.is_compatible(si.NEWTON): "\

+str(myNewton.is_compatible(si.NEWTON))

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

6.2 dft_example.py 349

6.2 dft_example.py

In this section we show how to integrate SCUQ in NumPys fft module. Although
we implemented most of NumPys ufuncs, we cannot use quantities directly in the fft
module of NumPy. The reason for this drawback is the fft module being directly imple-
mented in C requiring floating point ndarrays as input parameters. In compensation, we
implemented the floating-point conversion functions of NumPy. Thus our type quantity
can be converted to a floating-point number. In order to avoid an unwanted conversion,
we require weak consistency checking be enabled to perform the conversion. In Line
5 we create an array of input data. These values are quantities and thus have a unit.
To convert these values to float strict consistency checking has to be disabled as shown
in Line 15. The converted array can be used as usual, however it lost the information
about the unit. We suggest saving the default unit from the quantity before conversion
takes place and reassign it to the result.

from numpy import *
from scuq import *

generate some data, of a measured quantity
data = array([quantities.Quantity(si.VOLT, cos(50 * t)) \

for t in xrange(1000)])

the problem is, NumPy doesn’t accept object
arguments for the fft module; therefore,
the data must be converted to the numpy
float type.

Enable weak consistency checking to convert to float64,
the python floating point type.
quantities.set_strict(False)
f_data = float64(data)
quantities.set_strict(True)

perform fft
ff_data = fft.fft(f_data)

the result will also be the numpy complex type
assert(ff_data.dtype == complex)

6.3 ProductUnits.py

This example shows how to create and use instances of units.ProductUnit (p. 176). In
general, instances of this class are not created directly. They are created by multiplying
several other units. We will show this by a simple example using SI units.

See also:

units.Unit.__mul__ (p. 318)
units.ProductUnit (p. 176)

You have to import this module to use si units.
from scuq import *

You can create product units using other instances of
units:

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

6.3 ProductUnits.py 350

myUnit = si.KILOGRAM*si.METER/si.SECOND**2
This creates a unit that has the same physical dimension
as the unit Newton.

kg*m*s^(-2)
print str(myUnit)

Lets test if they are equal...
print "si.NEWTON == myUnit: "+str(si.NEWTON == myUnit)
Unexpectedly this returns False, but why?
si.Newton is an AlternateUnit, it could have been the case
that myUnit has not the same purpose as si.NEWTON.

However ...
print "si.NEWTON.is_compatible(myUnit): "\

+str(si.NEWTON.is_compatible(myUnit))
They may have different purposes, but they describe the same
physical dimension. Therefore, they are compatible.

That means that one could convert among them.
operator = si.NEWTON.get_operator_to(myUnit)
print "operator.convert(1) = "+str(operator.convert(1))
... In this case the operator returns the identical value
(as expected).

You can also do the above thing with an other unit than a
base unit.
myUnit = si.NEWTON * si.METER

N*m
print myUnit

Lets test if they are equal...
print "myUnit == si.KILOGRAM*si.METER**2/si.SECOND**2: "+ \

str(myUnit == si.KILOGRAM*si.METER**2/si.SECOND**2)
Unexpectedly this returns False, but why?
si.Newton is again an AlternateUnit.

However ...
print "myUnit.isCompatible(si.KILOGRAM*si.METER**2/si.SECOND**2): "+ \

str(myUnit.is_compatible(si.KILOGRAM*si.METER**2/si.SECOND**2))
They may have different purposes, but they describe the same
physical dimension. Therefore, they are compatible.

As expected...
operator = myUnit.get_operator_to(si.KILOGRAM*si.METER**2/si.SECOND**2)
print "operator.convert(1) = "+str(operator.convert(1))

This is to show that our library always maintains the Canonical
form of a product of units.
myNewton = si.KILOGRAM*si.METER/si.SECOND**2

yields: kg*m*s^(-2)
print str(myNewton)

now lets create a unit that is compatible to si.PASCAL
myPascal = myNewton / si.METER**2

yields: kg*m^(-1)*s(-2)
print str(myPascal)

what happens if...

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

6.4 TransformedUnits.py 351

tmp = myPascal / myNewton
print str(tmp)
should print: m^(-2)

another trick:
tmp = myPascal / myPascal
print str(tmp)
assert(tmp == units.ONE)
#yields the neutral element

6.4 TransformedUnits.py

This example shows how to use the instances of units.TransformedUnit (p. 281). In
general, it is not necessary to instance the units.TransformedUnit (p. 281) class di-
rectly. Instances of units.TransformedUnit (p. 281) are intended to be created implic-
itly by applying transformation to other units (i.e. BaseUnits). We will show this here
by transforming a SI base unit.

See also:

units.Unit.__add__ (p. 316)
units.Unit.__div__ (p. 317)
units.Unit.__mul__ (p. 318)
units.TransformedUnit (p. 281)

You have to import this module to use SI units.
from scuq import *

Transformed units can be defined in the same physical dimension
as a base unit by using the transformations below.

1. Adding an offset to a unit (i.e. degrees Celsius based on
Kelvin)
celsius = si.KELVIN + 273.15
2. Dividing it by a constant value (i.e. dyn based on Newton)
dyn = si.NEWTON / 100000
3. Muliplying it by an absolute constant value (i.e.
pound force from Newton)
lbf = si.NEWTON * 4.4482216152605

These transformations allow conversion among the
units that describe the same physical dimension.

This converts the unit back to the system unit, which is
Kelvins in this case.
operator = celsius.to_system_unit()
result = operator.convert(1)
assert(result == -272.15)

the same again for dyn -> Newton...
operator = dyn.to_system_unit()
result = operator.convert(1)
assert(result - 1e5 < 1e-10)

the same again for lbf -> Newton...
operator = lbf.to_system_unit()
result = operator.convert(1)
assert(result - 0.2248089431 < 1e-10)

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

6.5 UncertainQuantity.py 352

You can also get an operator to convert among the
transformed units: dyn -> lbf
operator = dyn.get_operator_to(lbf)
result = operator.convert(1)
assert(result - 444822 < 0.5)

6.5 UncertainQuantity.py

This example shows how uncertain values can be used as quantities. Instead of en-
capsulating instances of quantities.Quantity (p.184) inside an instance of
ucomponents.UncertainInput (p.309), you should always encapsulate un-
certain values inside quantities. Otherwise this will lead to unpredicable behavior.

See also:

quantities (p. 29) The quantities (p. 29) module.
ucomponents (p. 33) The module to evaluate the uncertainty of scalar models.
cucomponents (p. 26) The module to evalute the uncertainty of complex-valued
models

Author:

Thomas Reidemeister

ATTENTION: You must NOT encapsulate quantities in uncertain
components.
this violates our design. Instead use the followin approach...

You have to import this module to use quantities and uncertain
values.
from scuq import *
You have to import this module to use NumPy
import numpy as n

You have to define the uncertain value first.
This creates an uncertain value 1.0+-0.2
uvalue = ucomponents.UncertainInput(1.0, 0.2)

Now you may encapsulate it in a quantity
This creates a quantity (1.0+-0.2) [m]
uquantitiy = quantities.Quantity(si.METER, uvalue)

Now you may build a model
This creates a quantitiy that has m^(1/2) as unit and
the propagation of the uncertainty is also performed.
model_1 = n.sqrt(uquantitiy)
assert(model_1.get_default_unit() == n.sqrt(si.METER))

Create a context for the uncertainty evaluation.
c = ucomponents.Context()

Evaluate the input VALUE
u_c = c.uncertainty(uvalue)
assert(u_c == 0.2) # ...as expected

Evaluate the input QUANTITY
u_c = c.uncertainty(uquantitiy)

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

7 SCUQ Page Documentation 353

this one has a unit (!)
assert(u_c == quantities.Quantity(si.METER,0.2))

Evaluate the model
u_c = c.uncertainty(model_1)
... the correct unit.
assert(u_c ==
quantities.Quantity(n.sqrt(si.METER),0.1))

7 SCUQ Page Documentation

7.1 Coercion Rules

In this section we provide a complete set of coercion rules. These rules are used to con-
vert among the data types of SCUQ to preserve the semantics. Coercion is performed
whenever one of SCUQs types is involved in a binary operation. The goal of the coer-
cion rules is to provide equal data types for both arguments of a binary operation; for
example, the multiplication of a rational number and a floating point number should be
performed by converting the rational number to a floating point number. Coercion is
symmeric. Therefore the same applies to multiplications of floating point with rational
numbers. We denote the rule as follows.

a× f → f(a)× f

We denote the rules as follows:

• f and f(x) refer to instances of float. The second argument is used to express
the conversion of x to a float.

• z and z(x) refer to instances of long and int. The second argument is used to
express the conversion of x to a long.

• c and c(x) refer to instances of complex. The second argument is used to
express the conversion of x to a complex.

• nd refers to instances of numpy.ndarray.

• a and a(x) refer to instances of arithmetic.RationalNumber (p. 210). The
second argument is used to express the conversion of x to an instance of
arithmetic.RationalNumber (p. 210). The conversion is implemented in
arithmetic.RationalNumber.value_of (p. 231).

• q and q(x) refer to instances of quantities.Quantity (p. 184). The second argu-
ment is used to express the conversion of x to an instance of quantities.Quantity
(p. 184). The conversion is implemented in quantities.Quantity.value_of
(p. 210).

• us and us(x) refer to instances of ucomponents.UncertainComponent
(p. 289). The second argument is used to express the conversion of x to an in-
stance of ucomponents.UncertainComponent (p. 289). The conversion is im-
plemented in ucomponents.UncertainComponent.value_of (p. 309).

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

7.1 Coercion Rules 354

• uc and uc(x) refer to instances of cucomponents.CUncertainComponent
(p. 117). The second argument is used to express the conversion of x to an in-
stance of cucomponents.CUncertainComponent (p. 117). The conversion is
implemented in cucomponents.CUncertainComponent.value_of (p. 133).

• u denotes an instance of units.Unit (p. 314).

• ∅ denotes an undefined operation (i.e. the coercion raises an exception).

The cohercion rules by type:

• Type: arithmetic.RationalNumber (p. 210)

a× a → a× a (1)
a× z → a× a(z) (2)
a× c → c(a)× c (3)
a× f → f(a)× f (4)
a× q → q(a)× q (5)

a× us → us(a)× us (6)
a× uc → uc(a)× uc (7)
a× u → ∅ (8)

a× nd → ∅ (9)

• Type: quantities.Quantity (p. 184)

q × q → q × q (10)
q × z → q × q(z) (11)
q × c → q × q(c) (12)
q × f → q × q(f) (13)

q × us → q × q(us) (14)
q × uc → q × q(uc) (15)
q × nd → q × q(nd) (16)
q × u → ∅ (17)

• Type: ucomponents.UncertainComponent (p. 289)

us × us → us × us (18)
us × z → us × us(z) (19)
us × f → us × us(f) (20)

us × nd → ∅ (21)
us × uc → ∅ (22)
us × c → ∅ (23)
us × u → ∅ (24)

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

7.2 Files and Directories 355

• Type: cucomponents.CUncertainComponent (p. 117)

uc × uc → uc × uc (25)
uc × z → uc × uc(z) (26)
uc × f → uc × uc(f) (27)
uc × c → uc × uc(c) (28)

uc × nd → ∅ (29)
uc × u → ∅ (30)

Attention:

The binary operators from numpy, such as numpy.arctan2, and numpy.hypot, do
not implement coercion. Instead, they broadcast arctan2 to the first argument.
Therefore our coercion rules are not symmetric when using operators from numpy.

7.2 Files and Directories

In this section we describe the files that are not included in the file documentation.

AUTHORS This file contains the contact information of the authors of SCUQ.

At the time this document was created, only Thomas Reidemeister is involved.

doc.cfg Doxygen (see link below) uses this file to create the SCUQ reference manual
automatically.

It contains the style- and output format definitions. Please do not directly invoke Doxy-
gen on this file; use the respective make target instead (make clean).

Makefile This file is used by GNU make to assist the installation of SCUQ and per-
form a variety of administrative tasks.

• Performing the self test (make test).

• Creating the reference manual (make doc).

• Building backups of the current state of the library (make backup).

• Cleaning temporary files (make clean).

A companion file is make_latex.sh. It is a script to create the PDF documentation
whenever make doc is invoked.

examples This directory contains the application examples described in this pro-
gramming manual and in the Reidemeister thesis.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

7.3 Installation 356

doc This directory is a placeholder for the reference manual if it is created from the
source code. By default the documentation is created in PDF- and HTML format.

See also:

• SCUQ Installation Instructions

• SCUQ Example Documentation (included in this manual)

• "SCUQ - A Class Library for the Evaluation of Scalar- and Complex-valued
Uncertain Quantities"; Thomas Reidemeister; Diploma-Thesis; Otto-von-
Guericke University, Magdeburg, Germany (2007)

• GNU Make (http://www.gnu.org/software/make/)

• Doxygen (http://www.stack.nl/∼dimitri/doxygen/)

7.3 Installation

In this section we describe the installation of SCUQ in the user space. Note that the
version numbers of the tools refers to the minimum version required. SCUQ may also
run using later versions.

Minimum Requirements:

• Python 2.4, installed and registered in the PATH environment variable.

• NumPy 1.0.1, installed as module in the Python distribution.

• A tool uncompressing zip files (e.g. Info-ZIP or 7-ZIP). We assume that a con-
sole application exists to unzip files from the command line that is registered in
the PATH environment variable.

Optional Requirements:

• GNU Make, installed and registered in the PATH environment variable.

• GNU Tar, installed and registered in the PATH environment variable.

• Bzip2, installed and registered in the PATH environment variable.

• Doxygen 1.5.1, installed and registered in the PATH environment variable.

• Ghostscript 8.15.0, installed and registered in the PATH environment variable.

• BSD Shell, installed and registered in the PATH environment variable.

• LaTeX and PDFLaTex, installed and registered in the PATH environment vari-
able.

Most of the optional tools required are included in recent Linux distributions and Cyg-
win. Doxygen can be obtained using the link shown below.

We describe two types of the installation:

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

7.3 Installation 357

• A minimal installation that installs SCUQ for the use in Python only.

• A comprehensive installation that installs the class library for the use in Python,
performs the self-test, and generates the SCUQ reference manual. This installa-
tion can also generate backups of the current state of SCUQ (i.e. if it is modified
by the user).

Minimal Installation

1. Copy the archive SCUQ.zip to the directory desired. We denote it as <your
project dir>.

2. Open a console (e.g. BASH on Linux, CMD.EXE on Windows)

3. Change to the project directory using

cd <your project dir>

4. Unzip the archive SCUQ.zip using

unzip SCUQ.zip

You may also use other tools to uncompress the archive.

5. The classes and modules are now unzipped into the directory

<your project dir>/SCUQ/

6. Change to this directory using

cd SCUQ

7. Verify the compatibility of your platform running the suite of test cases using

python scuq/testcases.py (p.342)

The console output must not contain any exceptions. If it contains any exceptions
then SCUQ will most likely not run on your system. These failures maybe due
to a wrong configured Python installation or your platform does not meet the
required floating-point accuracy.

8. If SCUQ passed the self-verification, you can use it in your software. Please
copy the subdirectory scuq to the root of your project directory. Then you can
import SCUQ using

from scuq import ∗
in your projects code.

Comprehensive Installation

1. Perform the steps 1-6 of the minimal installation

2. Create the documentation and perform the self-verification using

make

The output of this command must not print any errors. Errors maybe due to a
wrong installation of the tools required or your platform does meet the required
floating-point accuracy.

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

7.3 Installation 358

3. If SCUQ passed the self-verification, you can use it in your software. Please
copy the subdirectory scuq to the root of your project directory. Then you can
import SCUQ in your project using

from scuq import ∗
The programming manual in HTML and PDF format is stored in the subdirectory
doc.

See also:

• Doxygen (http://www.stack.nl/∼dimitri/doxygen/)

• Python (http://www.python.org/)

• GNU (http://www.gnu.org/)

• teTeX (http://www.tug.org/teTeX/)

• MiKTeX (http://www.miktex.org/)

• NumPy (http://www.scipy.org/)

• Ghostscript (http://www.cs.wisc.edu/∼ghost/)

• Info-ZIP (http://www.info-zip.org/)

• 7-ZIP (http://www.7-zip.org/)

• CygWin (http://cygwin.com/)

Generated on Thu Feb 15 16:41:22 2007 for SCUQ by Doxygen

	Declaration / Erklärung
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 The Software Environment
	2.1 The Python Programming Language
	2.1.1 Numeric Types
	2.1.2 Storage Types

	2.2 NumPy
	2.3 Supported Platforms

	3 Propagation of Uncertainty of Scalar Quantities
	3.1 The Problem
	3.2 The GUM Approach
	3.3 Software Design
	3.3.1 The Hall Proposal
	3.3.2 The Reidemeister Formulation

	3.4 Discussion

	4 Propagation of Uncertainty of Complex-Valued Quantities
	4.1 Evaluating the Combined Standard Uncertainty of Complex-Valued Models
	4.1.1 The Hall Proposal Based on a Covariance Matrix of the Influence Quantities
	4.1.2 The Hall Proposal Based on Correlation Coefficients of the Influence Quantities

	4.2 Evaluating Confidence Regions of Uncertain Complex-Valued Models
	4.3 Conclusion

	5 Propagation of Uncertainty Using Bayesian Inference
	5.1 Fundamentals of Bayesian Statistics
	5.2 Propagation of Uncertainty
	5.2.1 Prior Information
	5.2.2 The Likelihood Function Representing the Model Prior
	5.2.3 The Posterior Distribution
	5.2.4 Reporting the Uncertainty

	5.3 Software Design
	5.4 Discussion

	6 Units in Measurements
	6.1 The International System of Units (SI)
	6.2 Implementing Units into Soft-- and Hardware
	6.3 Software Design
	6.4 Discussion

	7 Examples
	7.1 End Gauge Calibration Problem
	7.2 Impedance Measurement

	8 Conclusion
	Glossary
	Index of Notation
	References
	A The Depth-First-Search (DFS) Algorithm
	B Mathematical Proofs and Formulas
	B.1 Selected Statistical Distributions
	B.1.1 Uniform Distribution
	B.1.2 Triangular Distribution
	B.1.3 Beta Distribution
	B.1.4 Normal Distribution
	B.1.5 Multivariate Normal Distribution
	B.1.6 Bivariate Normal Distribution

	B.2 Monte-Carlo Integration
	B.3 The Central Limit Theorem
	B.4 Proof of the Equality of Both Approaches for Propagating Complex-Valued Uncertainty
	B.5 Complex Differentiable Functions and the Cauchy-Riemann Equations
	B.6 Derivation of Selected Complex-Valued Functions
	B.6.1 Absolute Value
	B.6.2 Complex Conjugate
	B.6.3 Negation
	B.6.4 Inversion
	B.6.5 Square-Root
	B.6.6 Exponential Function
	B.6.7 Natural Logarithm
	B.6.8 Sine Function
	B.6.9 Cosine Function
	B.6.10 Tangent Function
	B.6.11 Inverse Sine Function (Arc-Sine Function)
	B.6.12 Inverse Cosine Function (Arc-Cosine Function)
	B.6.13 Inverse Tangent Function (Arc-Tangent Function)
	B.6.14 Hyperbolic Sine Function
	B.6.15 Hyperbolic Cosine Function
	B.6.16 Hyperbolic Tangent Function
	B.6.17 Inverse Hyperbolic Sine Function
	B.6.18 Inverse Hyperbolic Cosine Function
	B.6.19 Inverse Hyperbolic Tangent Function
	B.6.20 Complex Addition
	B.6.21 Complex Multiplication
	B.6.22 Complex Division
	B.6.23 Complex Powers
	B.6.24 Inverse Two-Argument Tangent Function

	C SCUQ Programming Manual

